预测道路代理的未来行为是自动驾驶的关键任务。尽管现有模型在预测边际代理的未来行为方面取得了巨大的成功,但有效预测多种代理的一致的关节行为仍然是一个挑战。最近,提出了占用场的占用场表示,以通过占用网格和流量的结合来代表公路代理的联合未来状态,从而支持有效且一致的关节预测。在这项工作中,我们提出了一个新颖的占用流场预测因子,以产生准确的占用和流动预测,通过结合图像编码器的功能,该图像编码器从栅格化的流量图像中学习特征和矢量编码器,以捕获连续代理轨迹和地图状态的信息。在生成最终预测之前,这两个编码的功能由多个注意模块融合。我们的简单但有效的模型排在Waymo Open数据集占用和流预测挑战中,并在封闭的占用和流动预测任务中取得了最佳性能。
translated by 谷歌翻译
准确地预测占用和流量对于在复杂的交通情况下为自动驾驶汽车提供更好的安全性和互动至关重要。这项工作提出了Strajnet:一个多模式的SWIN变压框架,用于有效的场景占用和流动预测。我们采用Swin Transformer编码图像和相互作用感知运动表示形式,并提出一个交叉意识模块,以在不同的时间步长跨不同时间步骤将运动意识注入网格单元。然后通过颞膜金字塔解码器来解码流量和占用预测。所提出的方法在Waymo Open数据集基准中显示了竞争性预测准确性和其他评估指标。
translated by 谷歌翻译
在本报告中,我们在CVPR 2022的Waymo Open数据集挑战中介绍了解决方案和流程预测挑战,该挑战在排行榜上排名第一。我们已经开发了一个新型的层次空间时间网络,该网络具有时空编码器,一个富含潜在变量的多尺度聚合器以及一个递归层次结构3D解码器。我们使用多种损失,包括局灶性损失和修改的流量损失来有效指导训练过程。我们的方法达到了一个占地0.8389的流动占用AUC,并且优于排行榜上所有其他团队。
translated by 谷歌翻译
在本报告中,我们介绍了2022 Waymo Open DataSet挑战中运动预测轨迹的第一名解决方案。我们为多模式运动预测提出了一个新型的运动变压器框架,该框架引入了一组新型运动查询对,用于通过共同执行意图定位和迭代运动改进来产生更好的多模式未来轨迹。采用了一种简单的模型合奏策略,并采用了非最大抑制作用,以进一步提高最终性能。我们的方法在2022 Waymo打开数据集挑战的运动预测排行榜上取得了第一名,优于其他利润率的其他方法。代码将在https://github.com/sshaoshuai/mtr上找到。
translated by 谷歌翻译
本文提出了一个新型的深度学习框架,用于多模式运动预测。该框架由三个部分组成:经常性神经网络,以处理目标代理的运动过程,卷积神经网络处理栅格化环境表示以及一种基于距离的注意机制,以处理不同代理之间的相互作用。我们在大规模的真实驾驶数据集,Waymo Open Motion数据集上验证了所提出的框架,并将其性能与标准测试基准上的其他方法进行比较。定性结果表明,我们的模型给出的预测轨迹是准确,多样的,并且根据道路结构。标准基准测试的定量结果表明,我们的模型在预测准确性和其他评估指标方面优于其他基线方法。拟议的框架是2021 Waymo Open DataSet运动预测挑战的第二名。
translated by 谷歌翻译
Modern autonomous driving system is characterized as modular tasks in sequential order, i.e., perception, prediction and planning. As sensors and hardware get improved, there is trending popularity to devise a system that can perform a wide diversity of tasks to fulfill higher-level intelligence. Contemporary approaches resort to either deploying standalone models for individual tasks, or designing a multi-task paradigm with separate heads. These might suffer from accumulative error or negative transfer effect. Instead, we argue that a favorable algorithm framework should be devised and optimized in pursuit of the ultimate goal, i.e. planning of the self-driving-car. Oriented at this goal, we revisit the key components within perception and prediction. We analyze each module and prioritize the tasks hierarchically, such that all these tasks contribute to planning (the goal). To this end, we introduce Unified Autonomous Driving (UniAD), the first comprehensive framework up-to-date that incorporates full-stack driving tasks in one network. It is exquisitely devised to leverage advantages of each module, and provide complementary feature abstractions for agent interaction from a global perspective. Tasks are communicated with unified query design to facilitate each other toward planning. We instantiate UniAD on the challenging nuScenes benchmark. With extensive ablations, the effectiveness of using such a philosophy is proven to surpass previous state-of-the-arts by a large margin in all aspects. The full suite of codebase and models would be available to facilitate future research in the community.
translated by 谷歌翻译
预测交通参与者的多模式未来行为对于机器人车辆做出安全决策至关重要。现有作品探索以直接根据潜在特征预测未来的轨迹,或利用密集的目标候选者来识别代理商的目的地,在这种情况下,由于所有运动模式均来自相同的功能,而后者的策略具有效率问题,因此前者策略的收敛缓慢,因为其性能高度依赖关于候选目标的密度。在本文中,我们提出了运动变压器(MTR)框架,该框架将运动预测模拟为全球意图定位和局部运动改进的联合优化。 MTR不使用目标候选者,而是通过采用一系列可学习的运动查询对来结合空间意图。每个运动查询对负责特定运动模式的轨迹预测和完善,这可以稳定训练过程并促进更好的多模式预测。实验表明,MTR在边际和联合运动预测挑战上都达到了最新的性能,在Waymo Open Motion DataSet排行榜上排名第一。代码将在https://github.com/sshaoshuai/mtr上找到。
translated by 谷歌翻译
Predicting the future motion of dynamic agents is of paramount importance to ensure safety or assess risks in motion planning for autonomous robots. In this paper, we propose a two-stage motion prediction method, referred to as R-Pred, that effectively utilizes both the scene and interaction context using a cascade of the initial trajectory proposal network and the trajectory refinement network. The initial trajectory proposal network produces M trajectory proposals corresponding to M modes of a future trajectory distribution. The trajectory refinement network enhances each of M proposals using 1) the tube-query scene attention (TQSA) and 2) the proposal-level interaction attention (PIA). TQSA uses tube-queries to aggregate the local scene context features pooled from proximity around the trajectory proposals of interest. PIA further enhances the trajectory proposals by modeling inter-agent interactions using a group of trajectory proposals selected based on their distances from neighboring agents. Our experiments conducted on the Argoverse and nuScenes datasets demonstrate that the proposed refinement network provides significant performance improvements compared to the single-stage baseline and that R-Pred achieves state-of-the-art performance in some categories of the benchmark.
translated by 谷歌翻译
预测场景中代理的未来位置是自动驾驶中的一个重要问题。近年来,在代表现场及其代理商方面取得了重大进展。代理与场景和彼此之间的相互作用通常由图神经网络建模。但是,图形结构主要是静态的,无法表示高度动态场景中的时间变化。在这项工作中,我们提出了一个时间图表示,以更好地捕获流量场景中的动态。我们用两种类型的内存模块补充表示形式。一个专注于感兴趣的代理,另一个专注于整个场景。这使我们能够学习暂时意识的表示,即使对多个未来进行简单回归,也可以取得良好的结果。当与目标条件预测结合使用时,我们会显示出更好的结果,可以在Argoverse基准中达到最先进的性能。
translated by 谷歌翻译
许多现有的自动驾驶范式涉及多个任务的多个阶段离散管道。为了更好地预测控制信号并增强用户安全性,希望从联合时空特征学习中受益的端到端方法是可取的。尽管基于激光雷达的输入或隐式设计有一些开创性的作品,但在本文中,我们在可解释的基于视觉的设置中提出了问题。特别是,我们提出了一种空间性特征学习方案,以同时同时进行感知,预测和计划任务的一组更具代表性的特征,称为ST-P3。具体而言,提出了一种以自我为中心的积累技术来保留3D空间中的几何信息,然后才能感知鸟类视图转化。设计了双重途径建模,以考虑将来的预测,以将过去的运动变化考虑到过去。引入了基于时间的精炼单元,以弥补识别基于视觉的计划的元素。据我们所知,我们是第一个系统地研究基于端视力的自主驾驶系统的每个部分。我们在开环Nuscenes数据集和闭环CARLA模拟上对以前的最先进的方法进行基准测试。结果显示了我们方法的有效性。源代码,模型和协议详细信息可在https://github.com/openperceptionx/st-p3上公开获得。
translated by 谷歌翻译
预测公路参与者的未来运动对于自动驾驶至关重要,但由于令人震惊的运动不确定性,因此极具挑战性。最近,大多数运动预测方法求助于基于目标的策略,即预测运动轨迹的终点,作为回归整个轨迹的条件,以便可以减少解决方案的搜索空间。但是,准确的目标坐标很难预测和评估。此外,目的地的点表示限制了丰富的道路环境的利用,从而导致预测不准确。目标区域,即可能的目的地区域,而不是目标坐标,可以通过涉及更多的容忍度和指导来提供更软的限制,以搜索潜在的轨迹。考虑到这一点,我们提出了一个新的基于目标区域的框架,名为“目标区域网络”(GANET)进行运动预测,该框架对目标区域进行了建模,而不是确切的目标坐标作为轨迹预测的先决条件,更加可靠,更准确地执行。具体而言,我们建议一个goicrop(目标的目标区域)操作员有效地提取目标区域中的语义巷特征,并在目标区域和模型演员的未来互动中提取语义巷,这对未来的轨迹估计很大。 Ganet在所有公共文献(直到论文提交)中排名第一个,将其源代码排在第一位。
translated by 谷歌翻译
现有的自动驾驶管道将感知模块与预测模块分开。这两个模块通过手工挑选的功能(例如代理框和轨迹)作为接口进行通信。由于这种分离,预测模块仅从感知模块接收部分信息。更糟糕的是,感知模块的错误会传播和积累,从而对预测结果产生不利影响。在这项工作中,我们提出了VIP3D,这是一种视觉轨迹预测管道,利用原始视频的丰富信息来预测场景中代理的未来轨迹。VIP3D在整个管道中采用稀疏的代理查询,使其完全可区分和可解释。此外,我们为这项新型的端到端视觉轨迹预测任务提出了评估度量。Nuscenes数据集的广泛实验结果表明,VIP3D在传统管道和以前的端到端模型上的强劲性能。
translated by 谷歌翻译
在智能系统(例如自动驾驶和机器人导航)中,轨迹预测一直是一个长期存在的问题。最近在大规模基准测试的最新模型一直在迅速推动性能的极限,主要集中于提高预测准确性。但是,这些模型对效率的强调较少,这对于实时应用至关重要。本文提出了一个名为Gatraj的基于注意力的图形模型,其预测速度要高得多。代理的时空动力学,例如行人或车辆,是通过注意机制建模的。代理之间的相互作用是通过图卷积网络建模的。我们还实施了拉普拉斯混合物解码器,以减轻模式崩溃,并为每个代理生成多种模式预测。我们的模型以在多个开放数据集上测试的更高预测速度与最先进的模型相同的性能。
translated by 谷歌翻译
预测周围动态剂的未来轨迹是自动驾驶中的必要要求。这些轨迹主要取决于周围的静态环境以及这些动态剂的过去运动。此外,代理意图的多模式性质使轨迹预测问题更具挑战性。所有现有模型都同样考虑目标剂以及周围的剂,而无需考虑物理特性的变化。在本文中,我们为自动驾驶中的多模式轨迹预测提供了一个新颖的基于深度学习的框架,该框架考虑了目标及周围车辆的物理特性,例如对象类及其物理尺寸通过加权注意模块,从而改善预测的准确性。我们的模型在Nuscenes轨迹预测基准测试中取得了最高的结果,这些模型是使用栅格图来输入环境信息的模型。此外,我们的模型能够实时运行,达到300 fps的高推理率。
translated by 谷歌翻译
行为预测在集成自主驾驶软件解决方案中起着重要作用。在行为预测研究中,与单一代理行为预测相比,交互行为预测是一个较小的领域。预测互动剂的运动需要启动新的机制来捕获交互式对的关节行为。在这项工作中,我们将端到端的关节预测问题作为边际学习和车辆行为联合学习的顺序学习过程。我们提出了ProspectNet,这是一个采用加权注意分数的联合学习块,以模拟交互式剂对之间的相互影响。联合学习块首先权衡多模式预测的候选轨迹,然后通过交叉注意更新自我代理的嵌入。此外,我们将每个交互式代理的个人未来预测播放到一个智慧评分模块中,以选择顶部的$ K $预测对。我们表明,ProspectNet优于两个边际预测的笛卡尔产品,并在Waymo交互式运动预测基准上实现了可比的性能。
translated by 谷歌翻译
仿真是对机器人系统(例如自动驾驶汽车)进行扩展验证和验证的关键。尽管高保真物理和传感器模拟取得了进步,但在模拟道路使用者的现实行为方面仍然存在一个危险的差距。这是因为,与模拟物理和图形不同,设计人类行为的第一个原理模型通常是不可行的。在这项工作中,我们采用了一种数据驱动的方法,并提出了一种可以学会从现实世界驱动日志中产生流量行为的方法。该方法通过将交通仿真问题分解为高级意图推理和低级驾驶行为模仿,通过利用驾驶行为的双层层次结构来实现高样本效率和行为多样性。该方法还结合了一个计划模块,以获得稳定的长马行为。我们从经验上验证了我们的方法,即交通模拟(位)的双层模仿,并具有来自两个大规模驾驶数据集的场景,并表明位表明,在现实主义,多样性和长途稳定性方面可以达到平衡的交通模拟性能。我们还探索了评估行为现实主义的方法,并引入了一套评估指标以进行交通模拟。最后,作为我们的核心贡献的一部分,我们开发和开源一个软件工具,该工具将跨不同驱动数据集的数据格式统一,并将现有数据集将场景转换为交互式仿真环境。有关其他信息和视频,请参见https://sites.google.com/view/nvr-bits2022/home
translated by 谷歌翻译
预测道路用户的未来行为是自主驾驶中最具挑战性和最重要的问题之一。应用深度学习对此问题需要以丰富的感知信号和地图信息的形式融合异构世界状态,并在可能的期货上推断出高度多模态分布。在本文中,我们呈现MultiPath ++,这是一个未来的预测模型,实现了在流行的基准上实现最先进的性能。 MultiPath ++通过重新访问许多设计选择来改善多径架构。第一关键设计差异是偏离基于图像的基于输入世界状态的偏离,有利于异构场景元素的稀疏编码:多径++消耗紧凑且有效的折线,直接描述道路特征和原始代理状态信息(例如,位置,速度,加速)。我们提出了一种背景感知这些元素的融合,并开发可重用的多上下文选通融合组件。其次,我们重新考虑了预定义,静态锚点的选择,并开发了一种学习模型端到端的潜在锚嵌入的方法。最后,我们在其他ML域中探索合奏和输出聚合技术 - 常见的常见域 - 并为我们的概率多模式输出表示找到有效的变体。我们对这些设计选择进行了广泛的消融,并表明我们所提出的模型在协会运动预测竞争和Waymo开放数据集运动预测挑战上实现了最先进的性能。
translated by 谷歌翻译
近年来,行为预测模型已经激增,尤其是在自动驾驶的流行现实机器人技术应用中,代表移动代理可能未来的分布对于安全舒适的运动计划至关重要。在这些模型中,选择代表输入和输出的坐标框架的选择具有至关重要的交易折扣,这些折扣通常属于两个类别之一。以代理为中心的模型转换输入并在以代理为中心的坐标中执行推断。这些模型在场景元素之间的翻译和旋转上本质上不变,在公共排行榜上表现最好,但与代理和场景元素的数量相互缩小。以场景为中心的模型使用固定的坐标系来处理所有代理。这为他们提供了在所有代理之间共享表示形式的优势,并提供有效的摊销推理计算,该计算与代理数量线性缩放。但是,这些模型必须学习场景元素之间的翻译和旋转的不变性,并且通常以表现为中心的模型。在这项工作中,我们在概率运动预测模型之间开发知识蒸馏技术,并应用这些技术来缩小以代理为中心和以场景为中心的模型之间的性能差距。这将以场景为中心的模型性能提高了13.2%,在公共Argoverse基准中,Waymo Open Datatet的7.8%,在大型内部数据集中最多可达9.4%。这些以场景为中心的改进的模型在公共排行榜中排名很高,在繁忙场景中以代理商为中心的教师的效率高15倍。
translated by 谷歌翻译
从社交机器人到自动驾驶汽车,多种代理的运动预测(MP)是任意复杂环境中的至关重要任务。当前方法使用端到端网络解决了此问题,其中输入数据通常是场景的最高视图和所有代理的过去轨迹;利用此信息是获得最佳性能的必不可少的。从这个意义上讲,可靠的自动驾驶(AD)系统必须按时产生合理的预测,但是,尽管其中许多方法使用了简单的Convnets和LSTM,但在使用两个信息源时,模型对于实时应用程序可能不够有效(地图和轨迹历史)。此外,这些模型的性能在很大程度上取决于训练数据的数量,这可能很昂贵(尤其是带注释的HD地图)。在这项工作中,我们探讨了如何使用有效的基于注意力的模型在Argoverse 1.0基准上实现竞争性能,该模型将其作为最小地图信息的过去轨迹和基于地图的功能的输入,以确保有效且可靠的MP。这些功能代表可解释的信息作为可驱动区域和合理的目标点,与基于黑框CNN的地图处理方法相反。
translated by 谷歌翻译
自动驾驶的运动预测是一项艰巨的任务,因为复杂的驾驶场景导致静态和动态输入的异质组合。这是一个开放的问题,如何最好地表示和融合有关道路几何,车道连接,时变的交通信号状态以及动态代理的历史及其相互作用的历史。为了模拟这一不同的输入功能集,许多提出的方法旨在设计具有多种模态模块的同样复杂系统。这导致难以按严格的方式进行扩展,扩展或调整的系统以进行质量和效率。在本文中,我们介绍了Wayformer,这是一个基于注意力的运动架构,用于运动预测,简单而均匀。 Wayformer提供了一个紧凑的模型描述,该描述由基于注意力的场景编码器和解码器组成。在场景编码器中,我们研究了输入方式的早期,晚和等级融合的选择。对于每种融合类型,我们通过分解的注意力或潜在的查询关注来探索策略来折衷效率和质量。我们表明,尽管早期融合的结构简单,但不仅是情感不可知论,而且还取得了最先进的结果。
translated by 谷歌翻译