在线发布的图像存在隐私问题,因为它们可以用作面部识别系统的参考例子。这种滥用的图像违反了隐私权,但很难抵消。很好地确定,可以为基于深神经网络的识别系统创建侵犯示例图像。这些对手示例可用于破坏图像的效用作为参考示例或培训数据。在这项工作中,我们使用生成的对抗性网络(GaN)来创造欺骗面部识别的对抗例子,我们在愚弄面部识别方面取得了可接受的成功率。我们的结果通过去除鉴别器组件来减少GaN的培训时间。此外,我们的结果表明,知识蒸馏可以彻底减少所产生的模型的大小而不会影响性能,表明我们的贡献可以在智能手机上舒适地运行
translated by 谷歌翻译
使用社交媒体网站和应用程序已经变得非常受欢迎,人们在这些网络上分享他们的照片。在这些网络上自动识别和标记人们的照片已经提出了隐私保存问题,用户寻求隐藏这些算法的方法。生成的对抗网络(GANS)被证明是非常强大的在高多样性中产生面部图像以及编辑面部图像。在本文中,我们提出了一种基于GAN的生成掩模引导的面部图像操纵(GMFIM)模型,以将无法察觉的编辑应用于输入面部图像以保护图像中的人的隐私。我们的模型由三个主要组件组成:a)面罩模块将面积从输入图像中切断并省略背景,b)用于操纵面部图像并隐藏身份的GaN的优化模块,并覆盖身份和c)用于组合输入图像的背景和操纵的去识别的面部图像的合并模块。在优化步骤的丢失功能中考虑了不同的标准,以产生与输入图像一样类似的高质量图像,同时不能通过AFR系统识别。不同数据集的实验结果表明,与最先进的方法相比,我们的模型可以实现对自动面部识别系统的更好的性能,并且它在大多数实验中捕获更高的攻击成功率。此外,我们提出的模型的产生图像具有最高的质量,更令人愉悦。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
深度神经网络的面部识别模型已显示出容易受到对抗例子的影响。但是,过去的许多攻击都要求对手使用梯度下降来解决输入依赖性优化问题,这使该攻击实时不切实际。这些对抗性示例也与攻击模型紧密耦合,并且在转移到不同模型方面并不那么成功。在这项工作中,我们提出了Reface,这是对基于对抗性转换网络(ATN)的面部识别模型的实时,高度转移的攻击。 ATNS模型对抗性示例生成是馈送前向神经网络。我们发现,纯U-NET ATN的白盒攻击成功率大大低于基于梯度的攻击,例如大型面部识别数据集中的PGD。因此,我们为ATN提出了一个新的架构,该架构缩小了这一差距,同时维持PGD的10000倍加速。此外,我们发现在给定的扰动幅度下,与PGD相比,我们的ATN对抗扰动在转移到新的面部识别模型方面更有效。 Reface攻击可以在转移攻击环境中成功欺骗商业面部识别服务,并将面部识别精度从AWS SearchFaces API和Azure Face验证准确性从91%降低到50.1%,从而将面部识别精度从82%降低到16.4%。
translated by 谷歌翻译
With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called adversarial examples. Adversarial perturbations are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying deep neural networks in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for deep neural networks, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples. In addition, three major challenges in adversarial examples and the potential solutions are discussed.
translated by 谷歌翻译
深度神经网络容易受到来自对抗性投入的攻击,并且最近,特洛伊木马误解或劫持模型的决定。我们通过探索有界抗逆性示例空间和生成的对抗网络内的自然输入空间来揭示有界面的对抗性实例 - 通用自然主义侵害贴片的兴趣类 - 我们呼叫TNT。现在,一个对手可以用一个自然主义的补丁来手臂自己,不太恶意,身体上可实现,高效 - 实现高攻击成功率和普遍性。 TNT是普遍的,因为在场景中的TNT中捕获的任何输入图像都将:i)误导网络(未确定的攻击);或ii)迫使网络进行恶意决定(有针对性的攻击)。现在,有趣的是,一个对抗性补丁攻击者有可能发挥更大的控制水平 - 选择一个独立,自然的贴片的能力,与被限制为嘈杂的扰动的触发器 - 到目前为止只有可能与特洛伊木马攻击方法有可能干扰模型建设过程,以嵌入风险发现的后门;但是,仍然意识到在物理世界中部署的补丁。通过对大型视觉分类任务的广泛实验,想象成在其整个验证集50,000张图像中进行评估,我们展示了TNT的现实威胁和攻击的稳健性。我们展示了攻击的概括,以创建比现有最先进的方法实现更高攻击成功率的补丁。我们的结果表明,攻击对不同的视觉分类任务(CIFAR-10,GTSRB,PUBFIG)和多个最先进的深神经网络,如WieredEnet50,Inception-V3和VGG-16。
translated by 谷歌翻译
模型反转攻击(MIAS)旨在创建合成图像,通过利用模型的学习知识来反映目标分类器的私人培训数据中的班级特征。先前的研究开发了生成的MIA,该MIA使用生成的对抗网络(GAN)作为针对特定目标模型的图像先验。这使得攻击时间和资源消耗,不灵活,并且容易受到数据集之间的分配变化的影响。为了克服这些缺点,我们提出了插头攻击,从而放宽了目标模型和图像之前的依赖性,并启用单个GAN来攻击广泛的目标,仅需要对攻击进行少量调整。此外,我们表明,即使在公开获得的预训练的gan和强烈的分配转变下,也可以实现强大的MIA,而先前的方法无法产生有意义的结果。我们的广泛评估证实了插头攻击的鲁棒性和灵活性,以及​​它们创建高质量图像的能力,揭示了敏感的类特征。
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
近年来,由于深度神经网络的发展,面部识别取得了很大的进步,但最近发现深神经网络容易受到对抗性例子的影响。这意味着基于深神经网络的面部识别模型或系统也容易受到对抗例子的影响。但是,现有的攻击面部识别模型或具有对抗性示例的系统可以有效地完成白色盒子攻击,而不是黑盒模仿攻击,物理攻击或方便的攻击,尤其是在商业面部识别系统上。在本文中,我们提出了一种攻击面部识别模型或称为RSTAM的系统的新方法,该方法可以使用由移动和紧凑型打印机打印的对抗性面膜进行有效的黑盒模仿攻击。首先,RSTAM通过我们提出的随机相似性转换策略来增强对抗性面罩的可传递性。此外,我们提出了一种随机的元优化策略,以结合几种预训练的面部模型来产生更一般的对抗性掩模。最后,我们在Celeba-HQ,LFW,化妆转移(MT)和CASIA-FACEV5数据集上进行实验。还对攻击的性能进行了最新的商业面部识别系统的评估:Face ++,Baidu,Aliyun,Tencent和Microsoft。广泛的实验表明,RSTAM可以有效地对面部识别模型或系统进行黑盒模仿攻击。
translated by 谷歌翻译
深度神经网络在人类分析中已经普遍存在,增强了应用的性能,例如生物识别识别,动作识别以及人重新识别。但是,此类网络的性能通过可用的培训数据缩放。在人类分析中,对大规模数据集的需求构成了严重的挑战,因为数据收集乏味,廉价,昂贵,并且必须遵守数据保护法。当前的研究研究了\ textit {合成数据}的生成,作为在现场收集真实数据的有效且具有隐私性的替代方案。这项调查介绍了基本定义和方法,在生成和采用合成数据进行人类分析时必不可少。我们进行了一项调查,总结了当前的最新方法以及使用合成数据的主要好处。我们还提供了公开可用的合成数据集和生成模型的概述。最后,我们讨论了该领域的局限性以及开放研究问题。这项调查旨在为人类分析领域的研究人员和从业人员提供。
translated by 谷歌翻译
当系统的全面了解时然而,这种技术在灰盒设置中行动不成功,攻击者面部模板未知。在这项工作中,我们提出了一种具有新开发的目标函数的相似性的灰度逆势攻击(SGADV)技术。 SGAdv利用不同的评分来产生优化的对抗性实例,即基于相似性的对抗性攻击。这种技术适用于白盒和灰度箱攻击,针对使用不同分数确定真实或调用用户的身份验证系统。为了验证SGAdv的有效性,我们对LFW,Celeba和Celeba-HQ的面部数据集进行了广泛的实验,反对白盒和灰度箱设置的面部和洞察面的深脸识别模型。结果表明,所提出的方法显着优于灰色盒设置中的现有的对抗性攻击技术。因此,我们总结了开发对抗性示例的相似性基础方法可以令人满意地迎合去认证的灰度箱攻击场景。
translated by 谷歌翻译
To assess the vulnerability of deep learning in the physical world, recent works introduce adversarial patches and apply them on different tasks. In this paper, we propose another kind of adversarial patch: the Meaningful Adversarial Sticker, a physically feasible and stealthy attack method by using real stickers existing in our life. Unlike the previous adversarial patches by designing perturbations, our method manipulates the sticker's pasting position and rotation angle on the objects to perform physical attacks. Because the position and rotation angle are less affected by the printing loss and color distortion, adversarial stickers can keep good attacking performance in the physical world. Besides, to make adversarial stickers more practical in real scenes, we conduct attacks in the black-box setting with the limited information rather than the white-box setting with all the details of threat models. To effectively solve for the sticker's parameters, we design the Region based Heuristic Differential Evolution Algorithm, which utilizes the new-found regional aggregation of effective solutions and the adaptive adjustment strategy of the evaluation criteria. Our method is comprehensively verified in the face recognition and then extended to the image retrieval and traffic sign recognition. Extensive experiments show the proposed method is effective and efficient in complex physical conditions and has a good generalization for different tasks.
translated by 谷歌翻译
基于深度学习的图像识别系统已广泛部署在当今世界的移动设备上。然而,在最近的研究中,深入学习模型被证明易受对抗的例子。一种逆势例的一个变种,称为对抗性补丁,由于其强烈的攻击能力而引起了研究人员的注意。虽然对抗性补丁实现了高攻击成功率,但由于补丁和原始图像之间的视觉不一致,它们很容易被检测到。此外,它通常需要对文献中的对抗斑块产生的大量数据,这是计算昂贵且耗时的。为了解决这些挑战,我们提出一种方法来产生具有一个单一图像的不起眼的对抗性斑块。在我们的方法中,我们首先通过利用多尺度发生器和鉴别器来决定基于受害者模型的感知敏感性的补丁位置,然后以粗糙的方式产生对抗性斑块。鼓励修补程序与具有对抗性训练的背景图像一致,同时保留强烈的攻击能力。我们的方法显示了白盒设置中的强烈攻击能力以及通过对具有不同架构和培训方法的各种型号的广泛实验,通过广泛的实验进行黑盒设置的优异转移性。与其他对抗贴片相比,我们的对抗斑块具有最大忽略的风险,并且可以避免人类观察,这是由显着性图和用户评估结果的插图支持的人类观察。最后,我们表明我们的对抗性补丁可以应用于物理世界。
translated by 谷歌翻译
在过去的十年中,深度学习急剧改变了传统的手工艺特征方式,具有强大的功能学习能力,从而极大地改善了传统任务。然而,最近已经证明了深层神经网络容易受到对抗性例子的影响,这种恶意样本由小型设计的噪音制作,误导了DNNs做出错误的决定,同时仍然对人类无法察觉。对抗性示例可以分为数字对抗攻击和物理对抗攻击。数字对抗攻击主要是在实验室环境中进行的,重点是改善对抗性攻击算法的性能。相比之下,物理对抗性攻击集中于攻击物理世界部署的DNN系统,这是由于复杂的物理环境(即亮度,遮挡等),这是一项更具挑战性的任务。尽管数字对抗和物理对抗性示例之间的差异很小,但物理对抗示例具有特定的设计,可以克服复杂的物理环境的效果。在本文中,我们回顾了基于DNN的计算机视觉任务任务中的物理对抗攻击的开发,包括图像识别任务,对象检测任务和语义细分。为了完整的算法演化,我们将简要介绍不涉及身体对抗性攻击的作品。我们首先提出一个分类方案,以总结当前的物理对抗攻击。然后讨论现有的物理对抗攻击的优势和缺点,并专注于用于维持对抗性的技术,当应用于物理环境中时。最后,我们指出要解决的当前身体对抗攻击的问题并提供有前途的研究方向。
translated by 谷歌翻译
身份验证系统容易受到模型反演攻击的影响,在这种攻击中,对手能够近似目标机器学习模型的倒数。生物识别模型是这种攻击的主要候选者。这是因为反相生物特征模型允许攻击者产生逼真的生物识别输入,以使生物识别认证系统欺骗。进行成功模型反转攻击的主要限制之一是所需的训练数据量。在这项工作中,我们专注于虹膜和面部生物识别系统,并提出了一种新技术,可大大减少必要的训练数据量。通过利用多个模型的输出,我们能够使用1/10进行模型反演攻击,以艾哈迈德和富勒(IJCB 2020)的训练集大小(IJCB 2020)进行虹膜数据,而Mai等人的训练集大小为1/1000。 (模式分析和机器智能2019)的面部数据。我们将新的攻击技术表示为结构性随机,并损失对齐。我们的攻击是黑框,不需要了解目标神经网络的权重,只需要输出向量的维度和值。为了显示对齐损失的多功能性,我们将攻击框架应用于会员推理的任务(Shokri等,IEEE S&P 2017),对生物识别数据。对于IRIS,针对分类网络的会员推断攻击从52%提高到62%的准确性。
translated by 谷歌翻译
在这项工作中,我们研究了面部重建的问题,鉴于从黑框面部识别引擎中提取的面部特征表示。确实,由于引擎中抽象信息的局限性,在实践中,这是非常具有挑战性的问题。因此,我们在蒸馏框架(dab-gan)中引入了一种名为基于注意力的生成对抗网络的新方法,以合成受试者的面孔,鉴于其提取的面部识别功能。鉴于主题的任何不受约束的面部特征,Dab-Gan可以在高清上重建他/她的脸。 DAB-GAN方法包括一种新型的基于注意力的生成结构,采用新的定义的Bioxtive Metrics学习方法。该框架首先引入徒图,以便可以在图像域中直接采用距离测量和度量学习过程,以进行图像重建任务。来自Blackbox面部识别引擎的信息将使用全局蒸馏过程最佳利用。然后,提出了一个基于注意力的发电机,以使一个高度可靠的发电机通过ID保存综合逼真的面孔。我们已经评估了有关具有挑战性的面部识别数据库的方法,即Celeba,LF​​W,AgeDB,CFP-FP,并始终取得了最新的结果。 Dab-Gan的进步也得到了图像现实主义和ID保存属性的证明。
translated by 谷歌翻译
对抗性的例子揭示了神经网络的脆弱性和不明原因的性质。研究对抗性实例的辩护具有相当大的实际重要性。大多数逆势的例子,错误分类网络通常无法被人类不可检测。在本文中,我们提出了一种防御模型,将分类器培训成具有形状偏好的人类感知分类模型。包括纹理传输网络(TTN)和辅助防御生成的对冲网络(GAN)的所提出的模型被称为人类感知辅助防御GaN(had-GaN)。 TTN用于扩展清洁图像的纹理样本,并有助于分类器聚焦在其形状上。 GaN用于为模型形成培训框架并生成必要的图像。在MNIST,时尚 - MNIST和CIFAR10上进行的一系列实验表明,所提出的模型优于网络鲁棒性的最先进的防御方法。该模型还证明了对抗性实例的防御能力的显着改善。
translated by 谷歌翻译
Although Deep Neural Networks (DNNs) have achieved impressive results in computer vision, their exposed vulnerability to adversarial attacks remains a serious concern. A series of works has shown that by adding elaborate perturbations to images, DNNs could have catastrophic degradation in performance metrics. And this phenomenon does not only exist in the digital space but also in the physical space. Therefore, estimating the security of these DNNs-based systems is critical for safely deploying them in the real world, especially for security-critical applications, e.g., autonomous cars, video surveillance, and medical diagnosis. In this paper, we focus on physical adversarial attacks and provide a comprehensive survey of over 150 existing papers. We first clarify the concept of the physical adversarial attack and analyze its characteristics. Then, we define the adversarial medium, essential to perform attacks in the physical world. Next, we present the physical adversarial attack methods in task order: classification, detection, and re-identification, and introduce their performance in solving the trilemma: effectiveness, stealthiness, and robustness. In the end, we discuss the current challenges and potential future directions.
translated by 谷歌翻译