无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
半监督域适应(SSDA)是将学习者调整到新域,只有一小组标记的数据集在源域上给出时,只有一小组标记的样本。在本文中,我们提出了一种基于对的SSDA方法,使用用样品对的自蒸馏来适应靶域的模型。每个样本对由来自标记数据集(即源或标记为目标)的教师样本以及来自未标记数据集的学生样本(即,未标记的目标)组成。我们的方法通过在教师和学生之间传输中间样式来生成助手功能,然后通过最小化学生和助手之间的输出差异来培训模型。在培训期间,助手逐渐弥合了两个域之间的差异,从而让学生容易地从老师那里学习。标准基准测试的实验评估表明,我们的方法有效地减少了域间和域内的差异,从而实现了对最近的方法的显着改进。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
无监督的域适应(UDA)旨在将标记的源分布与未标记的目标分布对齐,以获取域不变预测模型。然而,众所周知的UDA方法的应用在半监督域适应(SSDA)方案中不完全概括,其中来自目标域的少数标记的样本可用。在本文中,我们提出了一种用于半监督域适应(CLDA)的简单对比学习框架,该框架试图在SSDA中弥合标记和未标记的目标分布与源极和未标记的目标分布之间的域间差距之间的域间隙。我们建议采用类明智的对比学学习来降低原始(输入图像)和强大增强的未标记目标图像之间的域间间隙和实例级对比度对准,以最小化域内差异。我们已经凭经验表明,这两个模块相互补充,以实现卓越的性能。在三个众所周知的域适应基准数据集中的实验即Domainnet,Office-Home和Office31展示了我们方法的有效性。 CLDA在所有上述数据集上实现最先进的结果。
translated by 谷歌翻译
深度学习模型的最新发展,捕捉作物物候的复杂的时间模式有卫星图像时间序列(坐在),大大高级作物分类。然而,当施加到目标区域从训练区空间上不同的,这些模型差没有任何目标标签由于作物物候区域之间的时间位移进行。为了解决这个无人监督跨区域适应环境,现有方法学域不变特征没有任何目标的监督,而不是时间偏移本身。因此,这些技术提供了SITS只有有限的好处。在本文中,我们提出TimeMatch,一种新的无监督领域适应性方法SITS直接占时移。 TimeMatch由两个部分组成:1)时间位移的估计,其估计具有源极训练模型的未标记的目标区域的时间偏移,和2)TimeMatch学习,它结合了时间位移估计与半监督学习到一个分类适应未标记的目标区域。我们还引进了跨区域适应的开放式访问的数据集与来自欧洲四个不同区域的旁边。在此数据集,我们证明了TimeMatch优于所有竞争的方法,通过11%的在五个不同的适应情景F1-得分,创下了新的国家的最先进的跨区域适应性。
translated by 谷歌翻译
通过从完全标记的源域中利用数据,无监督域适应(UDA)通过显式差异最小化数据分布或对抗学习来提高未标记的目标域上的分类性能。作为增强,通过利用模型预测来加强目标特征识别期间涉及类别对齐。但是,在目标域上的错误类别预测中产生的伪标签不准确以及由源域的过度录制引起的分发偏差存在未探明的问题。在本文中,我们提出了一种模型 - 不可知的两阶段学习框架,这大大减少了使用软伪标签策略的缺陷模型预测,并避免了课程学习策略的源域上的过度拟合。从理论上讲,它成功降低了目标域上预期误差的上限的综合风险。在第一阶段,我们用分布对齐的UDA方法训练一个模型,以获得具有相当高的置位目标域上的软语义标签。为了避免在源域上的过度拟合,在第二阶段,我们提出了一种课程学习策略,以自适应地控制来自两个域的损失之间的加权,以便训练阶段的焦点从源分布逐渐移位到目标分布,以预测信心提升了目标分布在目标领域。对两个知名基准数据集的广泛实验验证了我们提出框架促进促进顶级UDA算法的性能的普遍效果,并展示其一致的卓越性能。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从标记的源域传输到未标记的目标域。传统上,基于子空间的方法为此问题形成了一类重要的解决方案。尽管他们的数学优雅和易腐烂性,但这些方法通常被发现在产生具有复杂的现实世界数据集的领域不变的功能时无效。由于近期具有深度网络的代表学习的最新进展,本文重新访问了UDA的子空间对齐,提出了一种新的适应算法,始终如一地导致改进的泛化。与现有的基于对抗培训的DA方法相比,我们的方法隔离了特征学习和分配对准步骤,并利用主要辅助优化策略来有效地平衡域不契约的目标和模型保真度。在提供目标数据和计算要求的显着降低的同时,基于子空间的DA竞争性,有时甚至优于几种标准UDA基准测试的最先进的方法。此外,子空间对准导致本质上定期的模型,即使在具有挑战性的部分DA设置中,也表现出强大的泛化。最后,我们的UDA框架的设计本身支持对测试时间的新目标域的逐步适应,而无需从头开始重新检测模型。总之,由强大的特征学习者和有效的优化策略提供支持,我们将基于子空间的DA建立为可视识别的高效方法。
translated by 谷歌翻译
未经监督的域适应(UDA)用于重新识别(RE-ID)是一个具有挑战性的任务:避免昂贵的附加数据的注释,它旨在将知识从域转移到仅具有未标记数据的域的带注释数据。已证明伪标签方法已对UDA重新ID有效。然而,这些方法的有效性大量取决于通过聚类影响影响伪标签的一些超参数(HP)的选择。兴趣领域缺乏注释使得这一选择是非微不足道的。目前的方法只需重复使用所有适应任务的相同的经验值,并且无论通过伪标记培训阶段都会改变的目标数据表示。由于这种简单的选择可能会限制其性能,我们的目标是解决这个问题。我们提出了对聚类UDA RE-ID进行培训选择的新理论基础以及伪标签UDA聚类的自动和循环HP调谐方法:丘比巴。 Hyprass在伪标记方法中包含两个模块:(i)基于标记源验证集的HP选择和(ii)特征歧视的条件域对齐,以改善基于源样本的HP选择。关于常用的人员重新ID和车辆重新ID数据集的实验表明,与常用的经验HP设置相比,我们所提出的次数始终如一地提高RE-ID中最先进的方法。
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
学习目标域中的未知样本(不存在于源类中)对于无监督域适应(UDA)相当重要。存在两个典型的UDA方案,即开放式和开放式集合,后者假定目标域中并非所有源类都显示在内。但是,大多数先前的方法都是为一个UDA场景而设计的,并且始终在其他UDA方案上表现差。此外,它们还需要在适应过程中标记的源数据,限制其在数据隐私敏感应用中的可用性。为了解决这些问题,本文提出了一种通用模型适应(UMAD)框架,其处理了UDA方案,而无需访问源数据,也不是关于域之间类别的类别的知识。具体而言,我们的目标是使用优雅设计的双头分类器来学习源模型,并将其提供给目标域。在适应期间,我们开发了一种信息丰富的一致性分数,以帮助区分从已知样品中的未知样本。为了在目标域中实现双边适应,我们进一步最大化了局部化的相互信息,以将已知的样本与源分类器对齐,并采用熵丢失,以便分别推动远离源分类边界的未知样本。开放式和开放式的UDA方案的实验表明,umad作为无需访问源数据的统一方法,展示与最先进的数据相关方法的可比性。
translated by 谷歌翻译
许多利用移动设备中的传感器的应用以及应用机器学习以提供新颖的服务。然而,诸如不同的用户,设备,环境和超参数之类的各种因素影响了这种应用的性能,从而使域移位(即,来自训练源数据集的目标用户的分发偏移)是一个重要问题。虽然最近的域适应技术试图解决这个问题,但各种因素之间的复杂相互作用通常会限制其有效性。我们认为,准确估算未训练的域中的性能可能会显着降低性能不确定性。我们呈现Dapper(域适配性能估计器),其估计目标域中的适应性能,只有未标记的目标数据。我们的直觉是目标数据上模型的输出提供了模型在目标域中的实际性能的线索。 Dapper不需要昂贵的标签成本,也不需要在部署后涉及额外的培训。与四个基线相比,我们与四个真实世界传感数据集进行了评估,表明,估计精度平均17%平均占据了基线的表现。此外,我们的On-Device实验表明,与基线相比,Dapper达到了多达216倍的计算开销。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
域适应(DA)旨在将知识从标签富裕但异构的域转移到标签恐慌域,这减轻了标签努力并吸引了相当大的关注。与以前的方法不同,重点是学习域中的特征表示,一些最近的方法存在通用半监督学习(SSL)技术,直接将它们应用于DA任务,甚至实现竞争性能。最受欢迎的SSL技术之一是伪标记,可通过标记数据训练的分类器为每个未标记数据分配伪标签。但是,它忽略了DA问题的分布偏移,并且不可避免地偏置为源数据。要解决此问题,我们提出了一个名为辅助目标域导向的分类器(ATDOC)的新伪标签框架。 ATDOC通过为目标数据引入辅助分类器来缓解分类器偏置,以提高伪标签的质量。具体地,我们使用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而不引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻域聚集的ATDOC显着优于域对齐技术和现有的SSL技术,以及甚至瘢痕标记的SSL任务。
translated by 谷歌翻译
大多数现有的多源域适配(MSDA)方法通过特征分布对准最小化多个源 - 目标域对之间的距离,从单个源设置借用的方法。但是,对于不同的源极域,对齐成对特征分布是具有挑战性的,甚至可以对MSDA进行反效率。在本文中,我们介绍了一种新颖的方法:可转让的属性学习。动机很简单:虽然不同的域可以具有急剧不同的视野,但它们包含相同的类类,其特征在一起相同的属性;因此,MSDA模型应该专注于学习目标域的最可转换的属性。采用这种方法,我们提出了域名关注一致性网络,称为DAC网。关键设计是一个特征通道注意模块,旨在识别可转移功能(属性)。重要的是,注意模块受到一致性损失的监督,这对源极和目标域之间的信道注意权重的分布施加。此外,为了促进对目标数据的鉴别特征学习,我们将伪标记与类紧凑性丢失相结合,以最小化目标特征和分类器的权重向量之间的距离。在三个MSDA基准测试中进行了广泛的实验表明,我们的DAC-NET在所有这些中实现了新的最新性能。
translated by 谷歌翻译
最近的特征对比学习(FCL)在无监督的代表学习中表现出了有希望的表现。然而,对于近置表示学习,其中标记的数据和未标记数据属于相同的语义空间,FCL不能显示由于在优化期间不涉及类语义而无法占用的压倒性增益。因此,产生的特征不保证由来自标记数据中学到的类重量轻松归类,尽管它们是富有的信息。为了解决这个问题,我们在本文中提出了一种新颖的概率对比学习(PCL),这不仅产生了丰富的功能,而且还强制执行它们以分布在课堂上的原型。具体而言,我们建议在SoftMax之后使用输出概率来执行对比学习而不是FCL中提取的功能。显然,这种方法可以在优化期间利用类语义。此外,我们建议在传统的FCL中删除$ \ ell_ {2} $归一化,并直接使用$ \ ell_ {1} $ - 归一化对比学习的概率。我们提出的PCL简单有效。我们在三个近距离图像分类任务中进行广泛的实验,即无监督域适应,半监督学习和半监督域适应。多个数据集上的结果表明,我们的PCL可以一致地获得相当大的收益并实现所有三个任务的最先进的性能。
translated by 谷歌翻译
无监督的域适应(UDA)旨在将知识从标记的源域传输到未标记的目标域。大多数现有的UDA方法通过学习域 - 不变的表示和在两个域中共享一个分类器来实现知识传输。但是,忽略与任务相关的域特定信息,并强制统一的分类器以适合两个域将限制每个域中的特征表达性。在本文中,通过观察到具有可比参数的变压器架构可以产生比CNN对应的更可转换的表示,我们提出了一个双赢的变压器框架(WINTR),它分别探讨了每个域的特定于域的知识,而同时交互式跨域知识。具体而言,我们使用变压器中的两个单独的分类令牌学习两个不同的映射,以及每个特定于域的分类器的设计。跨域知识通过源引导标签改进和与源或目标的单侧特征对齐传输,这保持了特定于域的信息的完整性。三个基准数据集的广泛实验表明,我们的方法优于最先进的UDA方法,验证利用域特定和不变性的有效性
translated by 谷歌翻译
自我监督的学习(SSL)最近成为特征学习方法中的最爱。因此,它可以吸引域适应方法来考虑结合SSL。直觉是强制执行实例级别一致性,使得预测器在域中变得不变。但是,域适应制度中的大多数现有SSL方法通常被视为独立的辅助组件,使域自适应的签名无人看管。实际上,域间隙消失的最佳区域和SSL PERUSES的实例级别约束可能根本不一致。从这一点来看,我们向一个特定的范式的自我监督学习量身定制,用于域适应,即可转让的对比学习(TCL),这与SSL和所需的跨域转移性相一致地联系起来。我们发现对比学习本质上是一个合适的域适应候选者,因为它的实例不变性假设可以方便地促进由域适应任务青睐的跨域类级不变性。基于特定的记忆库结构和伪标签策略,TCL然后通过清洁和新的对比损失来惩罚源头和靶之间的跨域内域差异。免费午餐是由于纳入对比学习,TCL依赖于移动平均的关键编码器,自然地实现了用于目标数据的伪标签的暂停标签,这避免了无额外的成本。因此,TCL有效地减少了跨域间隙。通过对基准(Office-Home,Visda-2017,Diamet-Five,PACS和Domainnet)进行广泛的实验,用于单源和多源域适配任务,TCL已经证明了最先进的性能。
translated by 谷歌翻译
无监督的域适应(UDA)处理在标记数据仅适用于不同的源域时对未标记的目标域数据进行分类的问题。不幸的是,由于源数据和目标数据之间的域间隙,常用的分类方法无法充分实现这项任务。在本文中,我们提出了一种新颖的不确定性感知域适应设置,将不确定性模拟在特征空间中的多变量高斯分布。我们表明,我们提出的不确定性测量与其他常见的不确定性量化相关,并涉及平滑分类器的决策边界,从而提高泛化能力。我们在挑战UDA数据集中评估我们提出的管道,实现最先进的结果。我们的方法代码可用于https://gitlab.com/tringwald/cvp。
translated by 谷歌翻译
最近,无监督的域适应是一种有效的范例,用于概括深度神经网络到新的目标域。但是,仍有巨大的潜力才能达到完全监督的性能。在本文中,我们提出了一种新颖的主动学习策略,以帮助目标域中的知识转移,有效域适应。我们从观察开始,即当训练(源)和测试(目标)数据来自不同的分布时,基于能量的模型表现出自由能量偏差。灵感来自这种固有的机制,我们经验揭示了一种简单而有效的能源 - 基于能量的采样策略揭示了比需要特定架构或距离计算的现有方法的最有价值的目标样本。我们的算法,基于能量的活动域适应(EADA),查询逻辑数据组,它将域特征和实例不确定性结合到每个选择回合中。同时,通过通过正则化术语对准源域周围的目标数据紧凑的自由能,可以隐含地减少域间隙。通过广泛的实验,我们表明EADA在众所周知的具有挑战性的基准上超越了最先进的方法,具有实质性的改进,使其成为开放世界中的一个有用的选择。代码可在https://github.com/bit-da/eada获得。
translated by 谷歌翻译
为了缓解标签的负担,无监督的域适应(UDA)旨在将知识传输到新的未标记数据集(目标)中的标记数据集(源)。尽管进展令人印象深刻,但先前的方法总是需要访问原始源数据,并开发数据相关的对准方法以以转换的学习方式识别目标样本,这可能会从源头中提高隐私问题。几个最近的研究通过利用来自源域的训练有素的白盒模型来替代解决方案,然而,它仍可能通过生成的对抗性学习泄漏原始数据。本文研究了UDA的实用和有趣的设置,其中仅在目标域中的适应期间提供了黑盒源模型(即,仅可用网络预测)。为了解决这个问题,我们提出了一个名为蒸馏和微调(用餐)的新的两步知识适应框架。考虑到目标数据结构,用餐首先将知识从源预测器蒸馏到定制的目标模型,然后微调蒸馏模型以进一步适合目标域。此外,神经网络不需要在用餐中的域中相同,甚至允许有效地适应低资源设备。三个UDA场景(即单源,多源和部分集)的经验结果确认,与最先进的数据相关的方法相比,该用途达到了高竞争力的性能。代码可用于\ url {https://github.com/tim-learn/dine/}。
translated by 谷歌翻译