在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
在本文中,我们提出了一种均匀抖动的一位量化方案,以进行高维统计估计。该方案包含截断,抖动和量化,作为典型步骤。作为规范示例,量化方案应用于三个估计问题:稀疏协方差矩阵估计,稀疏线性回归和矩阵完成。我们研究了高斯和重尾政权,假定重尾数据的基本分布具有有限的第二或第四刻。对于每个模型,我们根据一位量化的数据提出新的估计器。在高斯次级政权中,我们的估计器达到了对数因素的最佳最小速率,这表明我们的量化方案几乎没有额外的成本。在重尾状态下,虽然我们的估计量基本上变慢,但这些结果是在这种单位量化和重型尾部设置中的第一个结果,或者比现有可比结果表现出显着改善。此外,我们为一位压缩传感和一位矩阵完成的问题做出了巨大贡献。具体而言,我们通过凸面编程将一位压缩感传感扩展到次高斯甚至是重尾传感向量。对于一位矩阵完成,我们的方法与标准似然方法基本不同,并且可以处理具有未知分布的预量化随机噪声。提出了有关合成数据的实验结果,以支持我们的理论分析。
translated by 谷歌翻译
High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.
translated by 谷歌翻译
This paper studies the quantization of heavy-tailed data in some fundamental statistical estimation problems, where the underlying distributions have bounded moments of some order. We propose to truncate and properly dither the data prior to a uniform quantization. Our major standpoint is that (near) minimax rates of estimation error are achievable merely from the quantized data produced by the proposed scheme. In particular, concrete results are worked out for covariance estimation, compressed sensing, and matrix completion, all agreeing that the quantization only slightly worsens the multiplicative factor. Besides, we study compressed sensing where both covariate (i.e., sensing vector) and response are quantized. Under covariate quantization, although our recovery program is non-convex because the covariance matrix estimator lacks positive semi-definiteness, all local minimizers are proved to enjoy near optimal error bound. Moreover, by the concentration inequality of product process and covering argument, we establish near minimax uniform recovery guarantee for quantized compressed sensing with heavy-tailed noise.
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
我们在高维批处理设置中提出了统计上健壮和计算高效的线性学习方法,其中功能$ d $的数量可能超过样本量$ n $。在通用学习环境中,我们采用两种算法,具体取决于所考虑的损失函数是否为梯度lipschitz。然后,我们将我们的框架实例化,包括几种应用程序,包括香草稀疏,群 - 帕克斯和低升级矩阵恢复。对于每种应用,这导致了有效而强大的学习算法,这些算法在重尾分布和异常值的存在下达到了近乎最佳的估计率。对于香草$ S $ -SPARSITY,我们能够以重型尾巴和$ \ eta $ - 腐败的计算成本与非企业类似物相当的计算成本达到$ s \ log(d)/n $速率。我们通过开放源代码$ \ mathtt {python} $库提供了有效的算法实现文献中提出的最新方法。
translated by 谷歌翻译
元学习或学习学习,寻求设计算法,可以利用以前的经验快速学习新技能或适应新环境。表示学习 - 用于执行元学习的关键工具 - 了解可以在多个任务中传输知识的数据表示,这在数据稀缺的状态方面是必不可少的。尽管最近在Meta-Leature的实践中感兴趣的兴趣,但缺乏元学习算法的理论基础,特别是在学习可转让陈述的背景下。在本文中,我们专注于多任务线性回归的问题 - 其中多个线性回归模型共享常见的低维线性表示。在这里,我们提供了可提供的快速,采样高效的算法,解决了(1)的双重挑战,从多个相关任务和(2)将此知识转移到新的,看不见的任务中的常见功能。两者都是元学习的一般问题的核心。最后,我们通过在学习这些线性特征的样本复杂性上提供信息定理下限来补充这些结果。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
本文研究了在存在重尾且可能是不对称噪声的情况下,低级矩阵的完成,我们旨在估计一组高度不完整的噪声条目,以估算一个基础的低级矩阵。尽管在过去的十年中,矩阵的完成问题吸引了很多关注,但是当观察结果被重尾噪音污染时,仍然缺乏理论上的理解。先前的理论缺乏解释经验结果,无法捕获估计误差对噪声水平的最佳依赖性。在本文中,我们采用自适应的Huber损失来容纳重尾噪声,当损失函数中的参数经过精心设计以平衡异常值的大偏差和稳健性时,这是对大型且可能不对称的误差的鲁棒性。然后,我们通过平衡的低级数burer-monteiro矩阵分解和梯度不错,并具有稳健的光谱初始化,提出了有效的非凸算法。我们证明,在仅在误差分布上的第二刻条件下,而不是次高斯的假设下,由提议的算法生成的迭代元素的欧几里得误差会快速减少几何,直到达到最小值 - 最佳统计估计误差,这具有相同的相同在次级案件中订购。这一重大进步背后的关键技术是一个强大的一对一分析框架。我们的模拟研究证实了理论结果。
translated by 谷歌翻译
本文研究了具有对抗性误差的强大一位压缩感应的二进制分类。假设该模型过度分配,并且感兴趣的参数有效稀疏。adaboost被考虑,并且通过其与MAX - $ \ ell_1 $ -Margin-Scressifir的关系,派生预测错误界限。开发的理论是一般的,并且允许重型的特征分布,只需要一个薄弱的时刻假设和抗浓缩条件。当特征满足小偏差下限时,示出了改善的收敛速率。特别是,结果提供了解释为什么内插对抗性噪声对于分类问题可以是无害的。模拟说明了所提出的理论。
translated by 谷歌翻译
In this paper, we study the trace regression when a matrix of parameters B* is estimated via the convex relaxation of a rank-regularized regression or via regularized non-convex optimization. It is known that these estimators satisfy near-optimal error bounds under assumptions on the rank, coherence, and spikiness of B*. We start by introducing a general notion of spikiness for B* that provides a generic recipe to prove the restricted strong convexity of the sampling operator of the trace regression and obtain near-optimal and non-asymptotic error bounds for the estimation error. Similar to the existing literature, these results require the regularization parameter to be above a certain theory-inspired threshold that depends on observation noise that may be unknown in practice. Next, we extend the error bounds to cases where the regularization parameter is chosen via cross-validation. This result is significant in that existing theoretical results on cross-validated estimators (Kale et al., 2011; Kumar et al., 2013; Abou-Moustafa and Szepesvari, 2017) do not apply to our setting since the estimators we study are not known to satisfy their required notion of stability. Finally, using simulations on synthetic and real data, we show that the cross-validated estimator selects a near-optimal penalty parameter and outperforms the theory-inspired approach of selecting the parameter.
translated by 谷歌翻译
通过在线规范相关性分析的问题,我们提出了\ emph {随机缩放梯度下降}(SSGD)算法,以最小化通用riemannian歧管上的随机功能的期望。 SSGD概括了投影随机梯度下降的思想,允许使用缩放的随机梯度而不是随机梯度。在特殊情况下,球形约束的特殊情况,在广义特征向量问题中产生的,我们建立了$ \ sqrt {1 / t} $的令人反感的有限样本,并表明该速率最佳最佳,直至具有积极的积极因素相关参数。在渐近方面,一种新的轨迹平均争论使我们能够实现局部渐近常态,其速率与鲁普特 - Polyak-Quaditsky平均的速率匹配。我们将这些想法携带在一个在线规范相关分析,从事文献中的第一次获得了最佳的一次性尺度算法,其具有局部渐近融合到正常性的最佳一次性尺度算法。还提供了用于合成数据的规范相关分析的数值研究。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
我们研究了称为“乐观速率”(Panchenko 2002; Srebro等,2010)的统一收敛概念,用于与高斯数据的线性回归。我们的精致分析避免了现有结果中的隐藏常量和对数因子,这已知在高维设置中至关重要,特别是用于了解插值学习。作为一个特殊情况,我们的分析恢复了Koehler等人的保证。(2021年),在良性过度的过度条件下,严格地表征了低规范内插器的人口风险。但是,我们的乐观速度绑定还分析了具有任意训练错误的预测因子。这使我们能够在随机设计下恢复脊和套索回归的一些经典统计保障,并有助于我们在过度参数化制度中获得精确了解近端器的过度风险。
translated by 谷歌翻译
在本文中,我们研究了经验$ \ ell_2 $最小化(erm)的估计性能(标准)阶段检索(NPR),由$ y_k = | \ alpha_k^*x_0 |^2+\ eta_k $,或嘈杂的广义阶段检索(NGPR)以$ y_k = x_0^*a_kx_0 + \ eta_k $,其中$ x_0 \ in \ mathbb {k}^d $是所需的信号,$ n $是样本大小,$ \ eta =(\ eta_1,...,\ eta_n)^\ top $是噪声向量。我们在不同的噪声模式下建立了新的错误界限,我们的证明对$ \ mathbb {k} = \ mathbb {r} $和$ \ mathbb {k} = \ mathbb {c} $有效。在任意噪声向量$ \ eta $下的NPR中,我们得出了一个新的错误$ o \ big(\ | \ eta \ | _ \ | _ \ infty \ sqrt {\ frac {d} {1}^\ top \ eta |} {n} \ big)$,它比当前已知的一个$ o \ big(\ frac {\ | \ eTa \ |} {\ sqrt {\ sqrt {n}} \ big big )$在许多情况下。在NGPR中,我们显示了$ o \ big(\ | \ eta \ | \ frac {\ sqrt {d}}} {n} {n} \ big)$ for nutary $ \ eta $。在这两个问题上,任意噪声的范围立即引起$ \ tilde {o}(\ sqrt {\ frac {d} {n}}}})$,用于次高斯或次指数随机噪声,带有一些常规但不可吻的去除或削弱的假设(例如,独立或均值均值的条件)。此外,我们首次尝试在假定$ l $ -th时刻的重尾随机噪声下进行ERM。为了实现偏见和差异之间的权衡,我们截断了响应并提出了相应的稳健ERM估计器,该估计量具有保证$ \ tilde {o} \ big(\ big [\ sqrt {\ frac {\ frac {d}) {n}} \ big]^{1-1/l} \ big)$在NPR,NGPR中。所有错误都直接扩展到等级$ r $矩阵恢复的更普遍的问题,这些结果得出的结论是,全级框架$ \ {a_k \} _ {k = 1}^n $ in ngpr是比级别1帧$ \ {\ alpha_k \ alpha_k^*\} _ {k = 1}^n $在npr中更强大。提出了广泛的实验结果,以说明我们的理论发现。
translated by 谷歌翻译
本文为信号去噪提供了一般交叉验证框架。然后将一般框架应用于非参数回归方法,例如趋势过滤和二元推车。然后显示所得到的交叉验证版本以获得最佳调谐的类似物所熟知的几乎相同的收敛速度。没有任何先前的趋势过滤或二元推车的理论分析。为了说明框架的一般性,我们还提出并研究了两个基本估算器的交叉验证版本;套索用于高维线性回归和矩阵估计的奇异值阈值阈值。我们的一般框架是由Chatterjee和Jafarov(2015)的想法的启发,并且可能适用于使用调整参数的广泛估算方法。
translated by 谷歌翻译
我们考虑估计与I.I.D的排名$ 1 $矩阵因素的问题。高斯,排名$ 1 $的测量值,这些测量值非线性转化和损坏。考虑到非线性的两种典型选择,我们研究了从随机初始化开始的此非convex优化问题的天然交流更新规则的收敛性能。我们通过得出确定性递归,即使在高维问题中也是准确的,我们显示出算法的样本分割版本的敏锐收敛保证。值得注意的是,虽然无限样本的种群更新是非信息性的,并提示单个步骤中的精确恢复,但算法 - 我们的确定性预测 - 从随机初始化中迅速地收敛。我们尖锐的非反应分析也暴露了此问题的其他几种细粒度,包括非线性和噪声水平如何影响收敛行为。从技术层面上讲,我们的结果可以通过证明我们的确定性递归可以通过我们的确定性顺序来预测我们的确定性序列,而当每次迭代都以$ n $观测来运行时,我们的确定性顺序可以通过$ n^{ - 1/2} $的波动。我们的技术利用了源自有关高维$ m $估计文献的遗留工具,并为通过随机数据的其他高维优化问题的随机初始化而彻底地分析了高阶迭代算法的途径。
translated by 谷歌翻译
我们解决了如何在没有严格缩放条件的情况下实现分布式分数回归中最佳推断的问题。由于分位数回归(QR)损失函数的非平滑性质,这是具有挑战性的,这使现有方法的使用无效。难度通过应用于本地(每个数据源)和全局目标函数的双光滑方法解决。尽管依赖局部和全球平滑参数的精致组合,但分位数回归模型是完全参数的,从而促进了解释。在低维度中,我们为顺序定义的分布式QR估计器建立了有限样本的理论框架。这揭示了通信成本和统计错误之间的权衡。我们进一步讨论并比较了基于WALD和得分型测试和重采样技术的反转的几种替代置信集结构,并详细介绍了对更极端分数系数有效的改进。在高维度中,采用了一个稀疏的框架,其中提出的双滑目标功能与$ \ ell_1 $ -penalty相辅相成。我们表明,相应的分布式QR估计器在近乎恒定的通信回合之后达到了全球收敛率。一项彻底的模拟研究进一步阐明了我们的发现。
translated by 谷歌翻译
This paper concerns with statistical estimation and inference for the ranking problems based on pairwise comparisons with additional covariate information such as the attributes of the compared items. Despite extensive studies, few prior literatures investigate this problem under the more realistic setting where covariate information exists. To tackle this issue, we propose a novel model, Covariate-Assisted Ranking Estimation (CARE) model, that extends the well-known Bradley-Terry-Luce (BTL) model, by incorporating the covariate information. Specifically, instead of assuming every compared item has a fixed latent score $\{\theta_i^*\}_{i=1}^n$, we assume the underlying scores are given by $\{\alpha_i^*+{x}_i^\top\beta^*\}_{i=1}^n$, where $\alpha_i^*$ and ${x}_i^\top\beta^*$ represent latent baseline and covariate score of the $i$-th item, respectively. We impose natural identifiability conditions and derive the $\ell_{\infty}$- and $\ell_2$-optimal rates for the maximum likelihood estimator of $\{\alpha_i^*\}_{i=1}^{n}$ and $\beta^*$ under a sparse comparison graph, using a novel `leave-one-out' technique (Chen et al., 2019) . To conduct statistical inferences, we further derive asymptotic distributions for the MLE of $\{\alpha_i^*\}_{i=1}^n$ and $\beta^*$ with minimal sample complexity. This allows us to answer the question whether some covariates have any explanation power for latent scores and to threshold some sparse parameters to improve the ranking performance. We improve the approximation method used in (Gao et al., 2021) for the BLT model and generalize it to the CARE model. Moreover, we validate our theoretical results through large-scale numerical studies and an application to the mutual fund stock holding dataset.
translated by 谷歌翻译