不确定性是时间序列预测任务的重要考虑因素。在这项工作中,我们专门致力于量化流量预测的不确定性。为了实现这一目标,我们开发了深层时空的不确定性定量(DeepStuq),可以估计核心和认知不确定性。我们首先利用时空模型来对流量数据的复杂时空相关性进行建模。随后,开发了两个独立的次神经网络,以最大化异质对数可能性,以估计不确定性。为了估计认知不确定性,我们通过整合蒙特卡洛辍学和平均自适应重量的重新训练方法来结合变异推理和深层结合的优点。最后,我们提出了基于温度缩放的后处理校准方法,从而提高了模型的概括能力估计不确定性。在四个公共数据集上进行了广泛的实验,经验结果表明,就点预测和不确定性量化而言,所提出的方法优于最先进的方法。
translated by 谷歌翻译
交通预测对于新时代智能城市的交通建设至关重要。但是,流量数据的复杂空间和时间依赖性使流量预测极具挑战性。大多数现有的流量预测方法都依赖于预定义的邻接矩阵来对时空依赖性建模。但是,道路交通状态是高度实时的,因此邻接矩阵应随着时间的推移而动态变化。本文介绍了一个新的多空间融合图复发网络(MSTFGRN),以解决上述问题。该网络提出了一种数据驱动的加权邻接矩阵生成方法,以补偿预定义的邻接矩阵未反映的实时空间依赖性。它还通过在不同矩的平行时空关系上执行新的双向时空融合操作来有效地学习隐藏的时空依赖性。最后,通过将全局注意机制集成到时空融合模块中,同时捕获了全局时空依赖性。对四个大型现实世界流量数据集进行的广泛试验表明,与替代基线相比,我们的方法实现了最先进的性能。
translated by 谷歌翻译
最近的研究侧重于制定流量预测作为一种时空图形建模问题。它们通常在每个时间步骤构造静态空间图,然后将每个节点连接在相邻时间步骤之间以构造时空图形。在这样的图形中,不同时间步骤的不同节点之间的相关性未明确地反映,这可以限制图形神经网络的学习能力。同时,这些模型在不同时间步骤中使用相同的邻接矩阵时,忽略节点之间的动态时空相关性。为了克服这些限制,我们提出了一种时空关节图卷积网络(StJGCN),用于交通预测在公路网络上的几个时间上限。具体地,我们在任何两个时间步长之间构造预定的和自适应时空关节图(STJG),这代表了全面和动态的时空相关性。我们进一步设计了STJG上的扩张因果时空关节图卷积层,以捕获与多个范围不同的视角的时空依赖关系。提出了一种多范围注意机制来聚合不同范围的信息。四个公共交通数据集的实验表明,STJGCN是计算的高效和优于11个最先进的基线方法。
translated by 谷歌翻译
最近实现了更准确的短期预测的数据驱动的空气质量预测。尽管取得了成功,但大多数目前的数据驱动解决方案都缺乏适当的模型不确定性的量化,以传达信任预测的程度。最近,在概率深度学习中已经制定了几种估计不确定性的实用工具。但是,在空气质量预测领域的域中没有经验应用和广泛的比较这些工具。因此,这项工作在空气质量预测的真实环境中应用了最先进的不确定性量化。通过广泛的实验,我们描述了培训概率模型,并根据经验性能,信心可靠性,置信度估计和实际适用性评估其预测性不确定性。我们还使用空气质量数据中固有的“自由”对抗培训和利用时间和空间相关性提出改善这些模型。我们的实验表明,所提出的模型比以前的工作更好地在量化数据驱动空气质量预测中的不确定性方面表现出。总体而言,贝叶斯神经网络提供了更可靠的不确定性估计,但可能挑战实施和规模。其他可扩展方法,如深合奏,蒙特卡罗(MC)辍学和随机重量平均-Gaussian(SWAG)可以执行良好,如果正确应用,但具有不同的权衡和性能度量的轻微变化。最后,我们的结果表明了不确定性估计的实际影响,并证明了,实际上,概率模型更适合提出知情决策。代码和数据集可用于\ url {https:/github.com/abdulmajid-murad/deep_probabilistic_forecast}
translated by 谷歌翻译
天气预报是一项有吸引力的挑战性任务,因为它对人类生活和大气运动的复杂性的影响。在大量历史观察到的时间序列数据的支持下,该任务适用于数据驱动的方法,尤其是深层神经网络。最近,基于图神经网络(GNN)方法在时空预测方面取得了出色的性能。但是,基于规范的GNNS方法仅分别对每个站的气象变量的局部图或整个车站的全局图进行建模,从而缺乏不同站点的气象变量之间的信息相互作用。在本文中,我们提出了一种新型的层次时空图形神经网络(Histgnn),以模拟多个站点气象变量之间的跨区域时空相关性。自适应图学习层和空间图卷积用于构建自学习图,并研究可变级别和站点级别图的节点之间的隐藏依赖性。为了捕获时间模式,扩张的成立为GATE时间卷积的主干旨在对长而各种气象趋势进行建模。此外,提出了动态的交互学习来构建在层次图中传递的双向信息。三个现实世界中的气象数据集的实验结果表明,史基元超过7个基准的卓越性能,并且将误差降低了4.2%至11.6%,尤其是与最先进的天气预测方法相比。
translated by 谷歌翻译
不确定性量化对于机器人感知至关重要,因为过度自信或点估计人员可以导致环境和机器人侵犯和损害。在本文中,我们评估了单视图监督深度学习中的不确定量化的可扩展方法,特别是MC辍学和深度集成。特别是对于MC辍学,我们探讨了阵列在架构中不同级别的效果。我们表明,在编码器的所有层中添加丢失会带来比文献中的其他变化更好的结果。此配置类似地执行与Deep Ensembles具有更低的内存占用,这是相关的简单。最后,我们探讨了伪RGBD ICP的深度不确定性,并展示其估计具有实际规模的准确的双视图相对运动的可能性。
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
使用图形卷积网络(GCN)构建时空网络已成为预测交通信号的最流行方法之一。但是,当使用GCN进行交通速度预测时,常规方法通常将传感器之间的关系作为均匀图,并使用传感器累积的数据来学习邻接矩阵。但是,传感器之间的空间相关性并未指定为一个,而是从各种观点方面定义不同。为此,我们旨在研究流量信号数据中固有的异质特征,以以各种方式学习传感器之间的隐藏关系。具体而言,我们设计了一种方法来通过将传感器之间的空间关系分为静态和动态模块来构造每个模块的异质图。我们提出了一个基于网络分散注意力的基于异质性 - 感知图形卷积网络(HAGCN)方法,该方法通过在异质图中考虑每个通道的重要性来汇总相邻节点的隐藏状态。实际流量数据集的实验结果验证了所提出的方法的有效性,比现有模型取得了6.35%的改善,并实现了最先进的预测性能。
translated by 谷歌翻译
Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: 1) in temporal axis, the values can be randomly or consecutively missing; 2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method.
translated by 谷歌翻译
由于动态和复杂的时空依赖性,交通预测具有挑战性。但是,现有方法仍然受到两个关键局限性。首先,许多方法通常使用静态预定义或自适应的空间图来捕获流量系统中动态的时空依赖性,这限制了灵活性,并且仅捕获了整个时间的共享模式,从而导致了次优性能。此外,大多数方法在每个时间步骤中都单独和独立地考虑地面真理与预测之间的绝对误差,这无法维持整体时间序列的全球属性和统计数据,并导致地面真相和预测之间的趋势差异。为此,在本文中,我们提出了一个动态自适应和对抗图卷积网络(DAAGCN),该网络将图形卷积网络(GCN)与生成的对抗网络(GANS)结合在一起,以进行流量预测。具体而言,DAAGCN利用带栅极模块的通用范式将时间变化的嵌入与节点嵌入集成在一起,以生成动态自适应图,以在每个时间步骤中推断空间 - 周期依赖性。然后,设计了两个歧视因子,以维持预测时间序列的全局属性的一致性,并在序列和图形级别上具有地面真相。在四个基准数据集上进行的广泛实验表明,DAAGCN的表现平均比最新的5.05%,3.80%和5.27%在MAE,RMSE和MAPE方面,同时加快收敛性高达9倍。代码可从https://github.com/juyongjiang/daagcn获得。
translated by 谷歌翻译
交通流量预测是智能运输系统的重要组成部分,从而受到了研究人员的关注。但是,交通道路之间的复杂空间和时间依赖性使交通流量的预测具有挑战性。现有方法通常是基于图形神经网络,使用交通网络的预定义空间邻接图来建模空间依赖性,而忽略了道路节点之间关系的动态相关性。此外,他们通常使用独立的时空组件来捕获时空依赖性,并且不会有效地对全局时空依赖性进行建模。本文提出了一个新的时空因果图形注意网络(STCGAT),以解决上述挑战。在STCGAT中,我们使用一种节点嵌入方法,可以在每个时间步骤中自适应生成空间邻接子图,而无需先验地理知识和对不同时间步骤动态生成图的拓扑的精细颗粒建模。同时,我们提出了一个有效的因果时间相关成分,其中包含节点自适应学习,图形卷积以及局部和全局因果关系卷积模块,以共同学习局部和全局时空依赖性。在四个真正的大型流量数据集上进行的广泛实验表明,我们的模型始终优于所有基线模型。
translated by 谷歌翻译
交通预测是智能交通系统的问题(ITS),并为个人和公共机构是至关重要的。因此,研究高度重视应对准确预报交通系统的复杂的时空相关性。但是,有两个挑战:1)大多数流量预测研究主要集中在造型相邻传感器的相关性,而忽略远程传感器,例如,商务区有类似的时空模式的相关性; 2)使用静态邻接矩阵中曲线图的卷积网络(GCNs)的现有方法不足以反映在交通系统中的动态空间依赖性。此外,它采用自注意所有的传感器模型动态关联细粒度方法忽略道路网络分层信息,并有二次计算复杂性。在本文中,我们提出了一种新动态多图形卷积递归网络(DMGCRN),以解决上述问题,可以同时距离的空间相关性,结构的空间相关性,和所述时间相关性进行建模。那么,只使用基于距离的曲线图来捕获空间信息从节点是接近距离也构建了一个新潜曲线图,其编码的道路之间的相关性的结构来捕获空间信息从节点在结构上相似。此外,我们在不同的时间将每个传感器的邻居到粗粒区域,并且动态地分配不同的权重的每个区域。同时,我们整合动态多图卷积网络到门控重复单元(GRU)来捕获时间依赖性。三个真实世界的交通数据集大量的实验证明,我们提出的算法优于国家的最先进的基线。
translated by 谷歌翻译
最近,深度学习方法在交通预测方面取得了长足的进步,但它们的性能取决于大量的历史数据。实际上,我们可能会面临数据稀缺问题。在这种情况下,深度学习模型无法获得令人满意的性能。转移学习是解决数据稀缺问题的一种有前途的方法。但是,流量预测中现有的转移学习方法主要基于常规网格数据,这不适用于流量网络中固有的图形数据。此外,现有的基于图的模型只能在道路网络中捕获共享的流量模式,以及如何学习节点特定模式也是一个挑战。在本文中,我们提出了一种新颖的传输学习方法来解决流量预测,几乎可以将知识从数据富的源域转移到数据范围的目标域。首先,提出了一个空间图形神经网络,该网络可以捕获不同道路网络的节点特异性时空交通模式。然后,为了提高转移的鲁棒性,我们设计了一种基于模式的转移策略,我们利用基于聚类的机制来提炼源域中的常见时空模式,并使用这些知识进一步提高了预测性能目标域。现实世界数据集的实验验证了我们方法的有效性。
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
Accurate traffic flow prediction, a hotspot for intelligent transportation research, is the prerequisite for mastering traffic and making travel plans. The speed of traffic flow can be affected by roads condition, weather, holidays, etc. Furthermore, the sensors to catch the information about traffic flow will be interfered with by environmental factors such as illumination, collection time, occlusion, etc. Therefore, the traffic flow in the practical transportation system is complicated, uncertain, and challenging to predict accurately. This paper proposes a deep encoder-decoder prediction framework based on variational Bayesian inference. A Bayesian neural network is constructed by combining variational inference with gated recurrent units (GRU) and used as the deep neural network unit of the encoder-decoder framework to mine the intrinsic dynamics of traffic flow. Then, the variational inference is introduced into the multi-head attention mechanism to avoid noise-induced deterioration of prediction accuracy. The proposed model achieves superior prediction performance on the Guangzhou urban traffic flow dataset over the benchmarks, particularly when the long-term prediction.
translated by 谷歌翻译
许多应用包括具有事件发生时间的事件数据序列。预测发生时间的模型在社交网络,金融交易,医疗保健和人类流动等各种应用程序中起着重要作用。最近的作品引入了基于神经网络的基于点的点过程,用于建模事件时间,并显示在预测事件时提供最先进的性能。然而,在量化预测性不确定性并且倾向于在外推期间产生过度自信预测的神经网络。适当的不确定性量化对于许多实际应用至关重要。因此,我们提出了一种新型点过程模型,贝叶斯神经鹰过程,利用贝叶斯模型的不确定性建模能力和神经网络的泛化能力。该模型能够通过事件发生时间预测认识性不确定性,并且在模拟和现实世界数据集上对其有效性进行了证明。
translated by 谷歌翻译
Spatio-temporal modeling as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the underlying heterogeneity and non-stationarity implied in the graph streams, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (METR-LA and PEMS-BAY) and a large-scale spatio-temporal dataset that contains a variaty of non-stationary phenomena. Our model outperformed the state-of-the-arts to a large degree on all three datasets (over 27% MAE and 34% RMSE). Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle locations and time slots with different patterns and be robustly adaptive to different anomalous situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
translated by 谷歌翻译
由于运输网络中复杂的时空依赖性,准确的交通预测是智能运输系统中一项艰巨的任务。许多现有的作品利用复杂的时间建模方法与图形卷积网络(GCN)合并,以捕获短期和长期时空依赖性。但是,这些具有复杂设计的分离模块可以限制时空表示学习的有效性和效率。此外,大多数以前的作品都采用固定的图形构造方法来表征全局时空关系,这限制了模型在不同时间段甚至不同的数据方案中的学习能力。为了克服这些局限性,我们提出了一个自动扩张的时空同步图网络,称为Auto-DSTSGN用于流量预测。具体而言,我们设计了自动扩张的时空同步图(自动-DSTSG)模块,以捕获短期和长期时空相关性,通过在增加顺序的扩张因子中堆叠更深的层。此外,我们提出了一种图形结构搜索方法,以自动构建可以适应不同数据方案的时空同步图。在四个现实世界数据集上进行的广泛实验表明,与最先进的方法相比,我们的模型可以取得约10%的改善。源代码可在https://github.com/jinguangyin/auto-dstsgn上找到。
translated by 谷歌翻译
准确的短期太阳能和风电预测在电力系统的规划和运营中起着重要作用。然而,由于局部天气条件,由于局部天气条件,因此,可再生能源的短期功率预测始终被认为是复杂的回归问题,而输出能力的波动和动态变化规律,即时空相关性。为了同时捕获时空特征,本文提出了一种新的基于图的神经网络的短期功率预测方法,它结合了图形卷积网络(GCN)和长短期内存(LSTM)。具体地,GCN用于学习相邻可再生能量之间的复杂空间相关性,并且LSTM用于学习功率曲线的动态变化。仿真结果表明,该拟议的混合方法可以模拟可再生能源的时空相关性,其性能优于现实世界数据集上的流行基线。
translated by 谷歌翻译
预测交通状况非常具有挑战性,因为每条道路在空间和时间上都高度依赖。最近,为了捕获这种空间和时间依赖性,已经引入了专门设计的架构,例如图形卷积网络和时间卷积网络。尽管流量预测取得了显着进展,但我们发现基于深度学习的流量预测模型仍然在某些模式中失败,主要是在事件情况下(例如,快速速度下降)。尽管通常认为这些故障是由于不可预测的噪声造成的,但我们发现可以通过考虑以前的失败来纠正这些故障。具体而言,我们观察到这些失败中的自相关错误,这表明仍然存在一些可预测的信息。在这项研究中,为了捕获错误的相关性,我们引入了Rescal,Rescal是流量预测的剩余估计模块,作为广泛适用的附加模块,用于现有的流量预测模型。我们的恢复通过使用以前的错误和图形信号来估算未来错误,从而实时校准现有模型的预测。对METR-LA和PEMS-BAY进行的广泛实验表明,我们的恢复可以正确捕获错误的相关性,并在事件情况下纠正各种流量预测模型的故障。
translated by 谷歌翻译