随着我们远离数据,预测不确定性应该增加,因为各种各样的解释与鲜为人知的信息一致。我们引入了远距离感知的先验(DAP)校准,这是一种纠正训练域之外贝叶斯深度学习模型过度自信的方法。我们将DAPS定义为模型参数的先验分布,该模型参数取决于输入,通过其与训练集的距离度量。DAP校准对后推理方法不可知,可以作为后处理步骤进行。我们证明了其在各种分类和回归问题中对几个基线的有效性,包括旨在测试远离数据的预测分布质量的基准。
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
最近出现了一系列用于估计具有单个正向通行证的深神经网络中的认知不确定性的新方法,最近已成为贝叶斯神经网络的有效替代方法。在信息性表示的前提下,这些确定性不确定性方法(DUM)在检测到分布(OOD)数据的同时在推理时添加可忽略的计算成本时实现了强大的性能。但是,目前尚不清楚dums是否经过校准,可以无缝地扩展到现实世界的应用 - 这都是其实际部署的先决条件。为此,我们首先提供了DUMS的分类法,并在连续分配转移下评估其校准。然后,我们将它们扩展到语义分割。我们发现,尽管DUMS尺度到现实的视觉任务并在OOD检测方面表现良好,但当前方法的实用性受到分配变化下的校准不良而破坏的。
translated by 谷歌翻译
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass. Our approach, deterministic uncertainty quantification (DUQ), builds upon ideas of RBF networks. We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models. By enforcing detectability of changes in the input using a gradient penalty, we are able to reliably detect out of distribution data. Our uncertainty quantification scales well to large datasets, and using a single model, we improve upon or match Deep Ensembles in out of distribution detection on notable difficult dataset pairs such as Fashion-MNIST vs. MNIST, and CIFAR-10 vs. SVHN.
translated by 谷歌翻译
部署在医学成像任务上的机器学习模型必须配备分布外检测功能,以避免错误的预测。不确定依赖于深神经网络的分布外检测模型是否适合检测医学成像中的域移位。高斯流程可以通过其数学结构可靠地与分布数据点可靠地分开分发数据点。因此,我们为分层卷积高斯工艺提出了一个参数有效的贝叶斯层,该过程融合了在Wasserstein-2空间中运行的高斯过程,以可靠地传播不确定性。这直接用远距离的仿射操作员在分布中直接取代了高斯流程。我们对脑组织分割的实验表明,所得的架构接近了确定性分割算法(U-NET)的性能,而先前的层次高斯过程尚未实现。此外,通过将相同的分割模型应用于分布外数据(即具有病理学(例如脑肿瘤)的图像),我们表明我们的不确定性估计导致分布外检测,以优于以前的贝叶斯网络和以前的贝叶斯网络的功能基于重建的方法学习规范分布。为了促进未来的工作,我们的代码公开可用。
translated by 谷歌翻译
最近,深度学习中的不确定性估计已成为提高安全至关重要应用的可靠性和鲁棒性的关键领域。尽管有许多提出的方法要么关注距离感知模型的不确定性,要么是分布式检测的不确定性,要么是针对分布校准的输入依赖性标签不确定性,但这两种类型的不确定性通常都是必要的。在这项工作中,我们提出了用于共同建模模型和数据不确定性的HETSNGP方法。我们表明,我们提出的模型在这两种类型的不确定性之间提供了有利的组合,因此在包括CIFAR-100C,ImagEnet-C和Imagenet-A在内的一些具有挑战性的分发数据集上优于基线方法。此外,我们提出了HETSNGP Ensemble,这是我们方法的结合版本,该版本还对网络参数的不确定性进行建模,并优于其他集合基线。
translated by 谷歌翻译
已知神经网络模型加强隐藏的数据偏差,使它们不可靠且难以解释。我们试图通过在功能空间中引入归纳偏差来构建“知道他们不知道的内容”。我们表明贝叶斯神经网络的定期激活功能在网络权重和平移 - 不变,静止的高斯过程前沿建立了连接之间的连接。此外,我们表明,通过覆盖三角波和周期性的Relu激活功能,该链接超出了正弦波(傅里叶)激活。在一系列实验中,我们表明定期激活功能获得了域内数据的可比性,并捕获对深度神经网络中的扰动输入的灵敏度进行域名检测。
translated by 谷歌翻译
贝叶斯范式有可能解决深度神经网络的核心问题,如校准和数据效率低差。唉,缩放贝叶斯推理到大量的空间通常需要限制近似。在这项工作中,我们表明它足以通过模型权重的小子集进行推动,以便获得准确的预测后断。另一个权重被保存为点估计。该子网推断框架使我们能够在这些子集上使用表现力,否则难以相容的后近近似。特别是,我们将子网线性化LAPLACE作为一种简单,可扩展的贝叶斯深度学习方法:我们首先使用线性化的拉普拉斯近似来获得所有重量的地图估计,然后在子网上推断出全协方差高斯后面。我们提出了一个子网选择策略,旨在最大限度地保护模型的预测性不确定性。经验上,我们的方法对整个网络的集合和较少的表达后近似进行了比较。
translated by 谷歌翻译
神经线性模型(NLM)是深度贝叶斯模型,通过从数据中学习特征,然后对这些特征进行贝叶斯线性回归来产生预测的不确定性。尽管他们受欢迎,但很少有作品专注于有条理地评估这些模型的预测性不确定性。在这项工作中,我们证明了NLMS的传统培训程序急剧低估了分发输入的不确定性,因此它们不能在风险敏感的应用中暂时部署。我们确定了这种行为的基本原因,并提出了一种新的培训框架,捕获下游任务的有用预测不确定性。
translated by 谷歌翻译
深度神经网络易于对异常值过度自信的预测。贝叶斯神经网络和深度融合都已显示在某种程度上减轻了这个问题。在这项工作中,我们的目标是通过提议预测由高斯混合模型的后续的高斯混合模型来结合这两种方法的益处,该高斯混合模型包括独立培训的深神经网络的LAPPALL近似的加权和。该方法可以与任何一组预先训练的网络一起使用,并且与常规合并相比,只需要小的计算和内存开销。理论上我们验证了我们的方法从训练数据中的培训数据和虚拟化的基本线上的标准不确定量级基准测试中的“远离”的过度控制。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
不确定性估计(UE)技术 - 例如高斯过程(GP),贝叶斯神经网络(BNN),蒙特卡罗辍学(MCDropout) - 旨在通过为每个分配估计的不确定性值来提高机器学习模型的可解释性他们的预测输出。然而,由于过高的不确定性估计可以在实践中具有致命的后果,因此本文分析了上述技术。首先,我们表明GP方法始终会产生高不确定性估计(OOD)数据。其次,我们在2D玩具示例中显示了BNN和MCDRopout在OOD样品上没有提供高不确定性估计。最后,我们凭经验展示了这种BNNS和MCDRopout的陷阱也在现实世界数据集中持有。我们的见解(i)提高了对深度学习中目前流行的UE方法更加谨慎使用的认识,(ii)鼓励开发UE方法,这些方法近似于基于GP的方法 - 而不是BNN和MCDROPOUT,以及我们的经验设置可用于验证任何其他UE方法的ood性能。源代码在https://github.com/epfml/unctemationsiapity-娱乐中获得。
translated by 谷歌翻译
The problem of detecting the Out-of-Distribution (OoD) inputs is of paramount importance for Deep Neural Networks. It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable and often tend to make over-confident predictions for OoDs, assigning to them a higher density than to the in-distribution data. This over-confidence in a single model can be potentially mitigated with Bayesian inference over the model parameters that take into account epistemic uncertainty. This paper investigates three approaches to Bayesian inference: stochastic gradient Markov chain Monte Carlo, Bayes by Backpropagation, and Stochastic Weight Averaging-Gaussian. The inference is implemented over the weights of the deep neural networks that parameterize the likelihood of the Variational Autoencoder. We empirically evaluate the approaches against several benchmarks that are often used for OoD detection: estimation of the marginal likelihood utilizing sampled model ensemble, typicality test, disagreement score, and Watanabe-Akaike Information Criterion. Finally, we introduce two simple scores that demonstrate the state-of-the-art performance.
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
本文我们的目标是利用异质的温度缩放作为校准策略(OOD)检测。此处的异质性是指每个样品的最佳温度参数可能不同,而不是传统的方法对整个分布使用相同的值。为了实现这一目标,我们提出了一种称为锚定的新培训策略,可以估算每个样品的适当温度值,从而导致几个基准的最新OOD检测性能。使用NTK理论,我们表明该温度函数估计与分类器的认知不确定性紧密相关,这解释了其行为。与某些表现最佳的OOD检测方法相反,我们的方法不需要暴露于其他离群数据集,自定义校准目标或模型结合。通过具有不同OOD检测设置的经验研究 - 远处,OOD附近和语义相干OOD - 我们建立了一种高效的OOD检测方法。可以在此处访问代码和模型-https://github.com/rushilanirudh/amp
translated by 谷歌翻译
独立训练的神经网络的集合是一种最新的方法,可以在深度学习中估算预测性不确定性,并且可以通过三角洲函数的混合物解释为后验分布的近似值。合奏的培训依赖于损失景观的非跨性别性和其单个成员的随机初始化,从而使后近似不受控制。本文提出了一种解决此限制的新颖和原则性的方法,最大程度地减少了函数空间中真实后验和内核密度估计器(KDE)之间的$ f $ divergence。我们从组合的角度分析了这一目标,并表明它在任何$ f $的混合组件方面都是supporular。随后,我们考虑了贪婪合奏结构的问题。从负$ f $ didivergence上的边际增益来量化后近似的改善,通过将新组件添加到KDE中得出,我们得出了集合方法的新型多样性项。我们的方法的性能在计算机视觉的分布外检测基准测试中得到了证明,该基准在多个数据集中训练的一系列架构中。我们方法的源代码可在https://github.com/oulu-imeds/greedy_ensembles_training上公开获得。
translated by 谷歌翻译
It is known that neural networks have the problem of being over-confident when directly using the output label distribution to generate uncertainty measures. Existing methods mainly resolve this issue by retraining the entire model to impose the uncertainty quantification capability so that the learned model can achieve desired performance in accuracy and uncertainty prediction simultaneously. However, training the model from scratch is computationally expensive and may not be feasible in many situations. In this work, we consider a more practical post-hoc uncertainty learning setting, where a well-trained base model is given, and we focus on the uncertainty quantification task at the second stage of training. We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities, which is effective and computationally efficient. Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties and easily adapt to different application settings, including out-of-domain data detection, misclassification detection, and trustworthy transfer learning. We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications over multiple representative image classification benchmarks.
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
深度神经网络具有令人印象深刻的性能,但是他们无法可靠地估计其预测信心,从而限制了其在高风险领域中的适用性。我们表明,应用多标签的一VS损失揭示了分类的歧义并降低了模型的过度自信。引入的Slova(单标签One-Vs-All)模型重新定义了单个标签情况的典型单VS-ALL预测概率,其中只有一个类是正确的答案。仅当单个类具有很高的概率并且其他概率可忽略不计时,提议的分类器才有信心。与典型的SoftMax函数不同,如果所有其他类的概率都很小,Slova自然会检测到分布的样本。该模型还通过指数校准进行了微调,这使我们能够与模型精度准确地对齐置信分数。我们在三个任务上验证我们的方法。首先,我们证明了斯洛伐克与最先进的分布校准具有竞争力。其次,在数据集偏移下,斯洛伐克的性能很强。最后,我们的方法在检测到分布样品的检测方面表现出色。因此,斯洛伐克是一种工具,可以在需要不确定性建模的各种应用中使用。
translated by 谷歌翻译
已经提出了神经常规差分方程(节点)作为流行深度学习模型的连续深度概括,例如残留网络(RESNET)。它们提供参数效率并在一定程度上在深度学习模型中自动化模型选择过程。然而,它们缺乏大量的不确定性建模和稳健性能力,这对于他们在几个现实世界应用中的使用至关重要,例如自主驾驶和医疗保健。我们提出了一种新颖的和独特的方法来通过考虑在ode求解器的结束时间$ t $上的分布来模拟节点的不确定性。所提出的方法,潜在的时间节点(LT节点)将$ T $视为潜在变量,并应用贝叶斯学习,以获得超过数据的$ $ $。特别地,我们使用变分推理来学习近似后的后验和模型参数。通过考虑来自后部的不同样本的节点表示来完成预测,并且可以使用单个向前通过有效地完成。由于$ t $隐含地定义节点的深度,超过$ t $的后部分发也会有助于节点的模型选择。我们还提出了一种自适应潜在的时间节点(Alt-Node),其允许每个数据点在终点上具有不同的后分布。 Alt-Node使用摊销变分推理来使用推理网络学习近似后的后验。我们展示了通过合成和几个现实世界图像分类数据的实验来建立不确定性和鲁棒性的提出方法的有效性。
translated by 谷歌翻译