机器学习(ML) - 基卡化的发现需要大量的高保真数据来揭示预测结构性质关系。对于对材料发现的兴趣的许多性质,数据生成的具体性和高成本导致数据景观几乎没有人居住和可疑质量。开始克服这些限制的数据驱动技术包括在密度函数理论中使用共识,开发新功能或加速电子结构理论,以及检测到计算要求苛刻的方法是最必要的。当无法可靠地模拟属性时,大型实验数据集可用于培训ML模型。在没有手动策策的情况下,越来越复杂的自然语言处理和自动图像分析使得可以从文献中学习结构性质关系。在这些数据集上培训的模型将随着社区反馈而改善。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
对称考虑对于用于提供原子配置的有效数学表示的主要框架的核心,然后在机器学习模型中用于预测与每个结构相关的特性。在大多数情况下,模型依赖于以原子为中心的环境的描述,并且适合于学习可以分解成原子贡献的原子特性或全局观察到。然而,许多与量子机械计算相关的数量 - 最值得注意的是,以原子轨道基础写入时的单粒子哈密顿矩阵 - 与单个中心无关,但结构中有两个(或更多个)原子。我们讨论一系列结构描述符,以概括为N中心案例的非常成功的原子居中密度相关特征,特别是如何应用这种结构,以有效地学习(有效)单粒子汉密尔顿人的矩阵元素以原子为中心的轨道基础。这些N中心的特点是完全的,不仅在转换和旋转方面,而且还就与原子相关的指数的排列而言 - 并且适合于构建新类的对称适应的机器学习模型分子和材料的性质。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
电子密度$ \ rho(\ vec {r})$是用密度泛函理论(dft)计算地面能量的基本变量。除了总能量之外,$ \ rho(\ vec {r})$分布和$ \ rho(\ vec {r})$的功能通常用于捕获电子规模以功能材料和分子中的关键物理化学现象。方法提供对$ \ rho(\ vec {r})的可紊乱系统,其具有少量计算成本的复杂无序系统可以是对材料相位空间的加快探索朝向具有更好功能的新材料的逆设计的游戏更换者。我们为预测$ \ rho(\ vec {r})$。该模型基于成本图形神经网络,并且在作为消息传递图的一部分的特殊查询点顶点上预测了电子密度,但仅接收消息。该模型在多个数据组中进行测试,分子(QM9),液体乙烯碳酸酯电解质(EC)和Lixniymnzco(1-Y-Z)O 2锂离子电池阴极(NMC)。对于QM9分子,所提出的模型的准确性超过了从DFT获得的$ \ Rho(\ vec {r})$中的典型变异性,以不同的交换相关功能,并显示超出最先进的准确性。混合氧化物(NMC)和电解质(EC)数据集更好的精度甚至更好。线性缩放模型同时探测成千上万点的能力允许计算$ \ Rho(\ vec {r})$的大型复杂系统,比DFT快于允许筛选无序的功能材料。
translated by 谷歌翻译
我们向高吞吐量基准介绍了用于材料和分子数据集的化学系统的多种表示的高吞吐量基准的机器学习(ML)框架。基准测试方法的指导原理是通过将模型复杂性限制在简单的回归方案的同时,在执行最佳ML实践的同时将模型复杂性限制为简单的回归方案,允许通过沿着同步的列车测试分裂的系列进行学习曲线来评估学习进度来评估原始描述符性能。结果模型旨在为未来方法开发提供通知的基线,旁边指示可以学习给定的数据集多么容易。通过对各种物理化学,拓扑和几何表示的培训结果的比较分析,我们介绍了这些陈述的相对优点以及它们的相互关联。
translated by 谷歌翻译
分子或材料的电子密度最近作为机器学习模型的目标数量受到了主要关注。一种自然选择,用于构建可传递可转移和线性缩放预测的模型是使用类似于通常用于密度拟合近似值的常规使用的原子基础来表示标量场。但是,基础的非正交性对学习练习构成了挑战,因为它需要立即考虑所有原子密度成分。我们设计了一种基于梯度的方法,可以直接在优化且高度稀疏的特征空间中最大程度地减少回归问题的损失函数。这样,我们克服了与采用以原子为中心的模型相关的限制,以在任意复杂的数据集上学习电子密度,从而获得极为准确的预测。增强的框架已在32个液体水的32个周期细胞上进行测试,具有足够的复杂性,需要在准确性和计算效率之间取得最佳平衡。我们表明,从预测的密度开始,可以执行单个Kohn-Sham对角度步骤,以访问总能量组件,而总能量组件仅针对参考密度函数计算,而误差仅为0.1 MEV/ATOM。最后,我们测试了高度异构QM9基准数据集的方法,这表明训练数据的一小部分足以在化学精度内得出地面总能量。
translated by 谷歌翻译
实现一般逆设计可以通过用户定义的属性极大地加速对新材料的发现。然而,最先进的生成模型往往限于特定的组成或晶体结构。这里,我们提出了一种能够一般逆设计的框架(不限于给定的一组元件或晶体结构),其具有在实际和往复空间中编码晶体的广义可逆表示,以及来自变分的属性结构潜空间autoencoder(vae)。在三种设计情况下,该框架通过用户定义的形成能量,带隙,热电(TE)功率因数和组合产生142个新晶体。在训练数据库中缺席的这些生成的晶体通过第一原理计算验证。成功率(验证的第一原理验证的目标圆形晶体/数量的设计晶体)范围为7.1%和38.9%。这些结果表示利用生成模型朝着性质驱动的一般逆设计的重要步骤,尽管在与实验合成结合时仍然存在实际挑战。
translated by 谷歌翻译
氢化镁(MGH $ _2 $)已被广泛研究有效储氢。然而,其散装解吸温度(553 k)被认为是实际应用的太高。除了掺杂外,可以降低这种用于释放氢的这种反应能量的策略是使用MGH $ _2 $基本的纳米颗粒(NPS)。在这里,我们首先调查Mg $ _N $ H $ _ {2n} $ NPS($ N <10 $)的热力学特性,特别是通过评估对焓,熵和热膨胀的anharmonic影响随机自我一致的谐波近似(SSCHA)。后一种方法超出了先前的方法,通常基于分子力学和准谐波近似,允许AB初始自由能量计算。我们发现了几乎线性依赖于间隙键长度的温度 - 具有超过300k的相对变化,与Mg-H键的键距离降低。为了将NPS的大小增加到MGH $ _2 $的氢解吸的实验中,我们设计了培训的计算有效的机器学习模型,以准确地确定力量和总能量(即潜在能量表面),与SSCHA模型集成了后者完全包括anharmonic效应。我们发现亚纳米簇Mg $ _n $ h $ _ {2n} $以$ n \ leq 10 $的显着减少,但不可忽视,虽然因anharmonicities(最多) 10%)。
translated by 谷歌翻译
使用精确能量功能的原子模拟可以为气体和冷凝相中的分子的功能运动提供分子水平洞察。与最近开发的和目前在整合和结合的努力与机器学习技术相结合,提供了一个独特的机会,使这种动态模拟更接近现实。这种观点界定了现场其他人的努力和您自己的工作的现状,并讨论了开放问题和未来的前景。
translated by 谷歌翻译
最近,机器学习(ML)电位的发展使得以量子力学(QM)模型的精度进行大规模和长期分子模拟成为可能。但是,对于高水平的QM方法,例如在元gga级和/或具有精确交换的密度函数理论(DFT),量子蒙特卡洛等,生成足够数量的用于训练的数据由于其高成本,计算挑战性。在这项工作中,我们证明了基于ML的DFT模型Deep Kohn-Sham(Deepks)可以在很大程度上缓解这个问题。 DeepKS采用计算高效的基于神经网络的功能模型来构建在廉价DFT模型上添加的校正项。在训练后,DeepKs提供了与高级QM方法相比,具有紧密匹配的能量和力,但是所需的训练数据的数量是比训练可靠的ML潜力所需的数量级要小。因此,DeepKs可以用作昂贵的QM型号和ML电位之间的桥梁:一个人可以生成相当数量的高准确性QM数据来训练DeepKs模型,然后使用DeepKs型号来标记大量的配置以标记训练ML潜力。该周期系统方案在DFT软件包算盘中实施,该计划是开源的,可以在各种应用程序中使用。
translated by 谷歌翻译
鉴定新型药物靶标相互作用(DTI)是药物发现中的关键和速率限制步骤。虽然已经提出了深入学习模型来加速识别过程,但我们表明最先进的模型无法概括到新颖(即,从未见过的)结构上。我们首先揭示负责此缺点的机制,展示模型如何依赖于利用蛋白质 - 配体二分网络拓扑的捷径,而不是学习节点特征。然后,我们介绍AI-BIND,这是一个与无监督的预训练的基于网络的采样策略相结合的管道,使我们能够限制注释不平衡并改善新型蛋白质和配体的结合预测。我们通过预测具有结合亲和力的药物和天然化合物对SARS-COV-2病毒蛋白和相关的人蛋白质来说明Ai-reat的值。我们还通过自动扩展模拟和与最近的实验证据进行比较来验证这些预测。总体而言,AI-Bind提供了一种强大的高通量方法来识别药物目标组合,具有成为药物发现中强大工具的可能性。
translated by 谷歌翻译
在三维分子结构上运行的计算方法有可能解决生物学和化学的重要问题。特别地,深度神经网络的重视,但它们在生物分子结构域中的广泛采用受到缺乏系统性能基准或统一工具包的限制,用于与分子数据相互作用。为了解决这个问题,我们呈现Atom3D,这是一个新颖的和现有的基准数据集的集合,跨越几个密钥的生物分子。我们为这些任务中的每一个实施多种三维分子学习方法,并表明它们始终如一地提高了基于单维和二维表示的方法的性能。结构的具体选择对于性能至关重要,具有涉及复杂几何形状的任务的三维卷积网络,在需要详细位置信息的系统中表现出良好的图形网络,以及最近开发的设备越多的网络显示出显着承诺。我们的结果表明,许多分子问题符合三维分子学习的增益,并且有可能改善许多仍然过分曝光的任务。为了降低进入并促进现场进一步发展的障碍,我们还提供了一套全面的DataSet处理,模型培训和在我们的开源ATOM3D Python包中的评估工具套件。所有数据集都可以从https://www.atom3d.ai下载。
translated by 谷歌翻译
基于原子量表的材料建模在新材料的发展及其特性的理解中起着重要作用。粒子模拟的准确性由原子间电位确定,该电位允许计算原子系统的势能作为原子坐标和潜在的其他特性的函数。基于原理的临界电位可以达到任意水平的准确性,但是它们的合理性受其高计算成本的限制。机器学习(ML)最近已成为一种有效的方法,可以通过用经过电子结构数据培训的高效替代物代替昂贵的模型来抵消Ab始于原子电位的高计算成本。在当前大量方法中,符号回归(SR)正在成为一种强大的“白盒”方法,以发现原子质潜力的功能形式。这项贡献讨论了符号回归在材料科学(MS)中的作用,并对当前的方法论挑战和最新结果提供了全面的概述。提出了一种基于遗传编程的方法来建模原子能(由原子位置和相关势能的快照组成),并在从头算电子结构数据上进行了经验验证。
translated by 谷歌翻译
开发神经网络电位(NNPS)的一个隐藏但重要的问题是培训算法的选择。在这里,我们使用Photl-Parrinello神经网络(BPNN)和两个可公开可访问的液体数据集进行比较两个流行训练算法,自适应力矩估计算法(ADAM)和扩展卡尔曼滤波算法(EKF)的性能。natl。阿卡。SCI。U.S.A. 2016,113,8368-8373和Proc。natl。阿卡。SCI。U.S.A. 2019,116,1110-1115]。这是通过在Tensorflow中实施EKF来实现的。结果发现,与ADAM相比,用EKF培训的NNP对学习率的价值更为可转让和更敏感。在这两种情况下,验证集的错误指标并不总是作为NNP的实际性能的良好指标。相反,我们表明它们的性能很好地与基于Fisher信息的相似度措施相互作用。
translated by 谷歌翻译
精确预测物理性质对于发现和设计新材料至关重要。机器学习技术引起了材料科学界的重大关注,以实现大规模筛选的潜力。图表卷积神经网络(GCNN)是最成功的机器学习方法之一,因为它在描述3D结构数据时的灵活性和有效性。大多数现有的GCNN模型集中在拓扑结构上,但过度简化了三维几何结构。然而,在材料科学中,原子的3D空间分布对于确定原子状态和内部力是至关重要的。本文提出了一种具有新型卷积机制的自适应GCNN,其同时在三维空间中同时模拟所有邻的原子之间的原子相互作用。我们将拟议模型应用于预测材料特性的两个明显挑战的问题。首先是亨利在金属 - 有机框架(MOF)中的气体吸附恒定,这是众所周知的,因为它对原子配置的高敏感性。第二种是固态晶体材料中的离子电导率,这是由于少数可用于训练的标记数据而困难。新模型优于两个数据集上的现有基于图形的模型,这表明临界三维几何信息确实捕获。
translated by 谷歌翻译
磁性材料是许多技术的重要组成部分,可以推动生态过渡,包括电动机,风力涡轮机发生器和磁性制冷系统。因此,发现具有大磁矩的材料是越来越优先的。在这里,使用最先进的机器学习方法,我们扫描数十万现有材料的无机晶体结构数据库(ICSD),以找到那些铁磁并具有大的磁矩。晶体图卷积神经网络(CGCNN),材料图网络(MEGNET)和随机森林都培训了包含高吞吐量DFT预测结果的材料项目数据库。对于随机林,我们使用随机方法选择基于化学成分和晶体结构的近百个相关描述符。事实证明,为测试集提供与神经网络相当的测试集。这些不同机器学习方法之间的比较给出了对ICSD数据库预测的错误的估计。
translated by 谷歌翻译
为N($ ^ 4 $ s)+ o $ _呈现和定量测试了一种用于预测来自特定初始状态(状态为分布或STD)的产品状态分布的机器学习(ML)模型。 {2} $(x $ ^ 3 \ sigma _ {\ rm g} ^ { - } $)$ \ lightarrow $ no(x $ ^ 2 \ pi $)+ o($ ^ 3 $ p)反应。用于训练神经网络(NN)的参考数据集由用于$ \ SIM 2000 $初始条件的显式准古典轨迹(QCT)模拟确定的最终状态分布。总体而言,通过根均方平方差价量化的预测精度$(\ SIM 0.003)$和$ r ^ 2 $ $(\ SIM 0.99)$之间的参考QCT和STD模型的预测很高测试集和离网状态特定的初始条件和从反应性状态分布中汲取的初始条件,其特征在于通过平移,旋转和振动温度。与在相同的初始状态分布上评估的更粗糙的粒度分布 - 分布(DTD)模型相比,STD模型表明了在反应物制剂中的状态分辨率的额外益处具有相当的性能。从特定的初始状态开始,还导致更多样化的最终状态分布,需要更具表现力的神经网络与DTD相比。显式QCT模拟之间的直接比较,STD模型和广泛使用的Larsen-Borgnakke(LB)模型表明,STD模型是定量的,而LB模型最适合旋转分布$ P(J')$和失败振动分布$ p(v')$。因此,STD模型可以非常适合模拟非预测高速流,例如,使用直接仿真蒙特卡罗方法。
translated by 谷歌翻译
蛋白质 - 配体相互作用(PLIS)是生化研究的基础,其鉴定对于估计合理治疗设计的生物物理和生化特性至关重要。目前,这些特性的实验表征是最准确的方法,然而,这是非常耗时和劳动密集型的。在这种情况下已经开发了许多计算方法,但大多数现有PLI预测大量取决于2D蛋白质序列数据。在这里,我们提出了一种新颖的并行图形神经网络(GNN),以集成PLI预测的知识表示和推理,以便通过专家知识引导的深度学习,并通过3D结构数据通知。我们开发了两个不同的GNN架构,GNNF是采用不同特种的基础实现,以增强域名认识,而GNNP是一种新颖的实现,可以预测未经分子间相互作用的先验知识。综合评价证明,GNN可以成功地捕获配体和蛋白质3D结构之间的二元相互作用,对于GNNF的测试精度和0.958,用于预测蛋白质 - 配体络合物的活性。这些模型进一步适用于回归任务以预测实验结合亲和力,PIC50对于药物效力和功效至关重要。我们在实验亲和力上达到0.66和0.65的Pearson相关系数,分别在PIC50和GNNP上进行0.50和0.51,优于基于2D序列的模型。我们的方法可以作为可解释和解释的人工智能(AI)工具,用于预测活动,效力和铅候选的生物物理性质。为此,我们通过筛选大型复合库并将我们的预测与实验测量数据进行比较来展示GNNP对SARS-COV-2蛋白靶标的实用性。
translated by 谷歌翻译
几乎每个机器学习算法的输入瞄准原子秤上的物质属性涉及笛卡尔原子坐标列表的转换为更称对称表示。许多最流行的表示可以被视为原子密度的对称相关性的扩展,并且主要在于基础的选择。相当大的努力一直致力于优化基础集,通常由关于回归目标行为的启发式考虑因素驱动。在这里,我们采取了不同的无监督的观点,旨在确定以最紧凑的方式进行编码的基础,可能是与手头数据集相关的结构信息。对于每个训练数据集和基础函数数,可以确定在这种意义上最佳的独特基础,并且可以通过用样条近似于近似地基于原始基础来计算。我们证明,这种结构产生了准确和计算效率的表示,特别是在构建对应于高于高机标相关性的表示时。我们提出了涉及分子和凝聚相机器学习模型的示例。
translated by 谷歌翻译