在基于典型的深度神经网络训练期间,所有模型的参数都在每次迭代时更新。最近的工作表明,在训练期间只能更新模型参数的小型子集,这可以减轻存储和通信要求。在本文中,我们表明,可以在模型的参数上诱导一个固定的稀疏掩码,该屏蔽选择要在许多迭代中更新的子集。我们的方法用最大的Fisher信息构造出k $参数的掩码,作为一个简单的近似,与手头的任务最重要的近似值。在参数高效转移学习和分布式培训的实验中,我们表明我们的方法与其他方法的性能相匹配或超出稀疏更新的其他方法的性能,同时在内存使用和通信成本方面更有效。我们公开发布我们的代码,以促进我们的方法的进一步应用。
translated by 谷歌翻译
转移学习提供了一种在学习另一个任务时从一个任务中利用知识的方式。执行转移学习通常涉及通过训练数据集上的梯度下降来迭代地更新模型的参数。在本文中,我们介绍了一种基本上不同的方法,用于将知识转移到跨模型,这些方法将多个模型“合并”成一个。我们的方法有效地涉及计算模型参数的加权平均值。我们表明,该平均值相当于从模型权重的后部的大致抽样。在某些情况下使用各向同性高斯近似时,我们还通过Fisher信息近似于精确矩阵来证明优势。总之,我们的方法使得与基于标准梯度的培训相比,可以以极低的计算成本将多种模型中的“知识”组合。我们展示了模型合并在中间任务培训和域适应问题上实现了基于梯度下降的转移学习的可比性。我们还表明,我们的合并程序使得可以以先前未开发的方式结合模型。为了测量我们方法的稳健性,我们对我们算法的设计进行了广泛的消融。
translated by 谷歌翻译
有效地近似损失函数的局部曲率信息是用于深神经网络的优化和压缩的关键工具。然而,大多数现有方法近似二阶信息具有高计算或存储成本,这可以限制其实用性。在这项工作中,我们调查矩阵,用于估计逆象征的矢量产品(IHVPS)的矩阵线性时间方法,因为当Hessian可以近似为乘语 - 一个矩阵的总和时,如Hessian的经典近似由经验丰富的Fisher矩阵。我们提出了两个新的算法作为称为M-FAC的框架的一部分:第一个算法朝着网络压缩量身定制,如果Hessian给出了M $等级的总和,则可以计算Dimension $ D $的IHVP。 ,使用$ O(DM ^ 2)$预压制,$ O(DM)$代价计算IHVP,并查询逆Hessian的任何单个元素的费用$ O(m)$。第二算法针对优化设置,我们希望在反向Hessian之间计算产品,估计在优化步骤的滑动窗口和给定梯度方向上,根据预先说明的SGD所需的梯度方向。我们为计算IHVP和OHVP和O(DM + M ^ 3)$ of $ o(dm + m ^ 2)$提供算法,以便从滑动窗口添加或删除任何渐变。这两种算法产生最先进的结果,用于网络修剪和相对于现有二阶方法的计算开销的优化。在[9]和[17]可用实现。
translated by 谷歌翻译
深度学习在广泛的AI应用方面取得了有希望的结果。较大的数据集和模型一致地产生更好的性能。但是,我们一般花费更长的培训时间,以更多的计算和沟通。在本调查中,我们的目标是在模型精度和模型效率方面提供关于大规模深度学习优化的清晰草图。我们调查最常用于优化的算法,详细阐述了大批量培训中出现的泛化差距的可辩论主题,并审查了解决通信开销并减少内存足迹的SOTA策略。
translated by 谷歌翻译
最近在各种领域中采用了关于下游任务的大型预训练模型。但是,更新大型预训练模型的整个参数集是昂贵的。尽管最近提出的参数效率转移学习(PETL)技术允许在预先训练的骨干网络内更新一小部分参数(例如,仅使用2%的参数)用于新任务,但它们只能通过最多减少训练记忆要求30%。这是因为可训练参数的梯度计算仍然需要通过大型预训练的骨干模型反向传播。为了解决这个问题,我们提出了梯子侧调(LST),这是一种新的PETL技术,可将训练记忆要求减少更多。与现有的参数效率方法不同,将其他参数插入骨干网络中,我们训练梯子侧网络,梯子侧网络是一个小而独立的网络,将中间激活作为通过快速连接(梯子)从骨干网络中获得的输入作为输入,并进行预测。 LST的内存要求明显低于以前的方法,因为它不需要通过骨干网络反向传播,而是仅通过侧网和梯子连接。我们使用NLP(胶)和视觉语言(VQA,GQA,NLVR2,MSCOCO)任务上的各种模型(T5,CLIP-T5)进行评估。 LST节省了69%的内存成本来微调整个网络,而其他方法仅将其中的26%保存在相似的参数使用中(因此,更多的内存节省了2.7倍)。此外,LST在低内存状态下的适配器和洛拉的精度高。为了进一步显示这种更好的记忆效率的优势,我们还将LST应用于较大的T5型号(T5-Large,T5-3B),比完整的微调和其他PETL方法获得更好的胶水性能。我们对VL任务的实验也完全相同。
translated by 谷歌翻译
新兴的边缘情报应用程序要求服务器重新训练和更新部署在远程边缘节点上的深神经网络,以利用新收集的数据示例。不幸的是,由于高度严格的通信资源,在实践中可能不可能连续向这些边缘节点发送全面更新的权重。在本文中,我们提出了重量的深层部分更新范式,该范式巧妙地选择了一小部分权重以在每个服务器到边缘通信中进行更新,同时与完整更新相比实现了相似的性能。我们的方法是通过分析上限的部分更新和完整更新之间的损失差异来建立的,并且只能更新权重,从而对上限产生最大的贡献。广泛的实验结果证明了我们部分更新方法的功效,该方法在更新少量的权重的同时,可以达到高推理精度。
translated by 谷歌翻译
深度学习在许多应用中取得了巨大成功。然而,其在实践中的部署已经受到两个问题的困扰:由于通常在地理上分布的大量数据传输,必须集中聚合的数据的隐私。解决这两个问题都是具有挑战性的,并且大多数现有工程无法提供有效的解决方案。在本文中,我们开发FEDPC,是隐私保存和沟通效率的联邦深度学习框架。该框架允许在多个私有数据集中学习模型,同时不显示培训数据的任何信息,即使是中间数据。该框架还可以最大限度地减少更新模型的数据量。我们正式证明培训FEDPC及其隐私保留财产时学习模型的融合。我们对大量实验进行了广泛的实验,以评估FEDPC的性能,以近似到上限的性能(培训集中时)和通信开销。结果表明,当数据分配到10个计算节点时,FEDPC在8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%。与现有工程相比,FEDPC还将通信开销降低至42.20±20美元。
translated by 谷歌翻译
二阶优化方法,尤其是D-KFAC(分布式Kronecker近似曲率)算法,在加速GPU簇上加速了深神经网络(DNN)训练方面已获得了吸引力。但是,现有的D-KFAC算法需要计算和传达大量二阶信息,即Kronecker因素(KFS),在预处理梯度之前,导致大量计算和通信开销以及高存储器足迹。在本文中,我们提出了DP-KFAC,这是一种新颖的分布式预处理方案,该方案将不同DNN层的KF构造任务分配给不同的工人。 DP-KFAC不仅保留了现有D-KFAC算法的收敛性属性,而且还可以带来三个好处:减少计算开销在构造KFS中,没有KFS的通信和低内存足迹。在64-GPU群集上进行的广泛实验表明,DP-KFAC将开销的计算开销降低了1.55 x-1.65x,通信成本降低2.79x-3.15x,并且内存足迹在每秒二阶更新中降低1.14x-1.47 x与最先进的D-KFAC方法相比。
translated by 谷歌翻译
几乎没有射击的内在学习(ICL)使预训练的语言模型能够通过为输入的一部分提供少量的培训示例来执行以前的任务,而无需任何基于梯度的培训。 ICL会产生大量的计算,内存和存储成本,因为它每次进行预测时都涉及处理所有培训示例。参数有效的微调(PEFT)(例如,适配器模块,提示调谐,稀疏更新方法等)提供了替代范式,其中训练了一组少量参数以启用模型来执行新任务。在本文中,我们严格地比较了几个ICL和PEFT,并证明后者提供了更好的准确性,并大大降低了计算成本。在此过程中,我们引入了一种称为(IA)$^3 $的新PEFT方法,该方法通过学习的向量来扩展激活,从而获得更强的性能,同时仅引入相对少量的新参数。我们还提出了一个基于称为T-FEW的T0模型的简单食谱,可以将其应用于新任务,而无需特定于任务的调整或修改。我们通过将T-FEW应用于木筏基准,首次实现超人性能,并以6%的绝对性能优于最先进的方法来验证T-FEW对完全看不见的任务的有效性。我们实验中使用的所有代码均可公开使用。
translated by 谷歌翻译
现代的深度学习系统越来越多地部署在个性化和联合学习等情况下,需要支持i)学习少量数据,ii)沟通有效的分布式培训协议。在这项工作中,我们开发了胶片转移(FIT),该胶片在图像分类设置中满足了这些要求。 FIT使用自动配置的幼稚贝叶斯分类器在固定的主链上,该主链在大型图像数据集上仔细考虑。参数有效膜层用于调节主链,从而为下游任务塑造表示形式。该网络通过情节微调协议进行培训。该方法是参数效率的,这对于能够实现几次学习,廉价的个性化模型更新以及沟通有效的联合学习的关键。我们尝试适合各种下游数据集,并表明它可以比最先进的大型转移(位)算法在低射击和挑战性的VTAB-1K基准上获得更好的分类准确性,该算法的精度少于1%可更新参数。最后,我们证明了在分布式低弹药应用中拟合的参数效率,包括模型个性化和联合学习,其中模型更新大小是重要的性能指标。
translated by 谷歌翻译
我们为大规模训练的大规模训练语言模型提供了更简单,更稀疏,更快的算法,这些算法在许多标准的NLP任务上实现了最新的隐私与实用性权衡。我们为此问题提出了一个元框架,这是受高度参数效率方法进行微调成功的启发。我们的实验表明,这些方法的差异化适应能力在三个重要方面优于以前的私人算法:实用程序,隐私以及私人培训的计算和记忆成本。在许多经常研究的数据集中,私人模型的实用性接近了非私人模型的方法。例如,在MNLI数据集上,我们使用Roberta-large的准确度为87.8 \%$,使用Roberta-Base $ 83.5 \%$,其隐私预算为$ \ Epsilon = 6.7 $。相比之下,缺乏隐私限制,罗伯塔·莱格(Roberta-Large)的准确度为$ 90.2 \%$。我们的发现对于自然语言生成任务类似。与DART,GPT-2-SMALL,GPT-2中,GPT-2-MEDIUM,GPT-2-LARGE和GPT-2-XL的私人微调达到38.5、42.0、43.1和43.8($ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 43.8) epsilon = 6.8,\ delta = $ 1E-5),而非私人基线为$ 48.1 $。我们所有的实验都表明,较大的模型更适合私人微调:虽然众所周知,它们旨在非优先实现卓越的准确性,但我们发现当引入隐私时,它们也更好地保持其准确性。
translated by 谷歌翻译
Neural network pruning has been a well-established compression technique to enable deep learning models on resource-constrained devices. The pruned model is usually specialized to meet specific hardware platforms and training tasks (defined as deployment scenarios). However, existing pruning approaches rely heavily on training data to trade off model size, efficiency, and accuracy, which becomes ineffective for federated learning (FL) over distributed and confidential datasets. Moreover, the memory- and compute-intensive pruning process of most existing approaches cannot be handled by most FL devices with resource limitations. In this paper, we develop FedTiny, a novel distributed pruning framework for FL, to obtain specialized tiny models for memory- and computing-constrained participating devices with confidential local data. To alleviate biased pruning due to unseen heterogeneous data over devices, FedTiny introduces an adaptive batch normalization (BN) selection module to adaptively obtain an initially pruned model to fit deployment scenarios. Besides, to further improve the initial pruning, FedTiny develops a lightweight progressive pruning module for local finer pruning under tight memory and computational budgets, where the pruning policy for each layer is gradually determined rather than evaluating the overall deep model structure. Extensive experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art baseline approaches, especially when compressing deep models to extremely sparse tiny models.
translated by 谷歌翻译
最近,稀疏的培训方法已开始作为事实上的人工神经网络的培训和推理效率的方法。然而,这种效率只是理论上。在实践中,每个人都使用二进制掩码来模拟稀疏性,因为典型的深度学习软件和硬件已针对密集的矩阵操作进行了优化。在本文中,我们采用正交方法,我们表明我们可以训练真正稀疏的神经网络以收获其全部潜力。为了实现这一目标,我们介绍了三个新颖的贡献,这些贡献是专门为稀疏神经网络设计的:(1)平行训练算法及其相应的稀疏实现,(2)具有不可训练的参数的激活功能,以支持梯度流动,以支持梯度流量, (3)隐藏的神经元对消除冗余的重要性指标。总而言之,我们能够打破记录并训练有史以来最大的神经网络在代表力方面训练 - 达到蝙蝠大脑的大小。结果表明,我们的方法具有最先进的表现,同时为环保人工智能时代开辟了道路。
translated by 谷歌翻译
Many applications require sparse neural networks due to space or inference time restrictions. There is a large body of work on training dense networks to yield sparse networks for inference, but this limits the size of the largest trainable sparse model to that of the largest trainable dense model. In this paper we introduce a method to train sparse neural networks with a fixed parameter count and a fixed computational cost throughout training, without sacrificing accuracy relative to existing dense-tosparse training methods. Our method updates the topology of the sparse network during training by using parameter magnitudes and infrequent gradient calculations. We show that this approach requires fewer floating-point operations (FLOPs) to achieve a given level of accuracy compared to prior techniques. We demonstrate state-of-the-art sparse training results on a variety of networks and datasets, including ResNet-50, MobileNets on Imagenet-2012, and RNNs on WikiText-103. Finally, we provide some insights into why allowing the topology to change during the optimization can overcome local minima encountered when the topology remains static * .
translated by 谷歌翻译
Transfer learning, where a model is first pre-trained on a data-rich task before being finetuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new "Colossal Clean Crawled Corpus", we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.
translated by 谷歌翻译
通过微调将大规模的预训练语言模型适应下游任务是实现NLP基准测试最先进性能的标准方法。然而,微调具有数百万或数十亿个参数的所有重量模型是对低资源设置中不稳定的采样低效,并且浪费,因为它需要为每个任务存储模型的单独副本。最近的工作已经开发了参数高效的微调方法,但这些方法仍然需要相对大量的参数或表现不足标准微调。在这项工作中,我们提出了一种特殊调整大型语言模型的方法,其在任务性能和比率参数之间具有更好的权衡的方法,而不是比上事先工作。 Compacter通过构建适配器,低级优化和参数化超复分乘法层的思想之上来实现这一目标。具体地,Compacter将特定于特定的权重矩阵插入到预估计模型的权重中,这些权重被有效地计算为共享的“慢速”权重和“快速”等级 - 每个Compacter层定义的矩阵之间的矩阵产品的总和。仅通过培训0.047%的预磨料模型的参数,Compacter会在胶水上标准微调和胜过标准微调的标准微调和低资源设置。我们的代码在〜\ url {https://github.com/rabeehk/compacter}上公开使用。
translated by 谷歌翻译
Federated Learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning however comes at the cost of a significant communication overhead during training. To address this problem, several compression methods have been proposed in the distributed training literature that can reduce the amount of required communication by up to three orders of magnitude. These existing methods however are only of limited utility in the Federated Learning setting, as they either only compress the upstream communication from the clients to the server (leaving the downstream communication uncompressed) or only perform well under idealized conditions such as iid distribution of the client data, which typically can not be found in Federated Learning. In this work, we propose Sparse Ternary Compression (STC), a new compression framework that is specifically designed to meet the requirements of the Federated Learning environment. STC extends the existing compression technique of top-k gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates. Our experiments on four different learning tasks demonstrate that STC distinctively outperforms Federated Averaging in common Federated Learning scenarios where clients either a) hold non-iid data, b) use small batch sizes during training, or where c) the number of clients is large and the participation rate in every communication round is low. We furthermore show that even if the clients hold iid data and use medium sized batches for training, STC still behaves paretosuperior to Federated Averaging in the sense that it achieves fixed target accuracies on our benchmarks within both fewer training iterations and a smaller communication budget. These results advocate for a paradigm shift in Federated optimization towards high-frequency low-bitwidth communication, in particular in bandwidth-constrained learning environments.
translated by 谷歌翻译
With increasing privacy concerns on data, recent studies have made significant progress using federated learning (FL) on privacy-sensitive natural language processing (NLP) tasks. Much literature suggests fully fine-tuning pre-trained language models (PLMs) in the FL paradigm can mitigate the data heterogeneity problem and close the performance gap with centralized training. However, large PLMs bring the curse of prohibitive communication overhead and local model adaptation costs for the FL system. To this end, we introduce various parameter-efficient tuning (PETuning) methods into federated learning. Specifically, we provide a holistic empirical study of representative PLMs tuning methods in FL. The experimental results cover the analysis of data heterogeneity levels, data scales, and different FL scenarios. Overall communication overhead can be significantly reduced by locally tuning and globally aggregating lightweight model parameters while maintaining acceptable performance in various FL settings. To facilitate the research of PETuning in FL, we also develop a federated tuning framework FedPETuning, which allows practitioners to exploit different PETuning methods under the FL training paradigm conveniently. The source code is available at \url{https://github.com/iezhuozhuo/FedETuning/tree/deltaTuning}.
translated by 谷歌翻译
训练有素的神经网络的性能至关重要。加上深度学习模型的不断增长的规模,这种观察激发了对学习稀疏模型的广泛研究。在这项工作中,我们专注于控制稀疏学习时的稀疏水平的任务。基于稀疏性惩罚的现有方法涉及对罚款因素的昂贵反复试验调整,因此缺乏直接控制所得模型的稀疏性。作为响应,我们采用了一个约束的公式:使用Louizos等人提出的栅极机制。 (2018年),我们制定了一个受约束的优化问题,其中稀疏以训练目标和所需的稀疏目标以端到端的方式指导。使用WIDERESNET和RESNET {18,50}模型进行了CIFAR-10/100,Tinyimagenet和ImageNet的实验验证了我们的提案的有效性,并证明我们可以可靠地实现预定的稀疏目标,而不会损害预测性能。
translated by 谷歌翻译
巨大的预训练模型已成为自然语言处理(NLP)的核心,它是针对一系列下游任务进行微调的起点。然而,此范式的两个疼痛点持续:(a)随着预训练的模型的增长越大(例如,GPT-3的175b参数),即使是微调过程也可能是耗时的,并且计算昂贵; (b)默认情况下,微调模型的大小与起点相同,由于其更专业的功能,这既不明智,也不是实际的,因为许多微调模型将部署在资源受限的环境中。为了解决这些疼痛点,我们通过在重量更新和最终模型权重中利用稀疏性来提出一个用于资源和参数有效的微调的框架。我们提出的框架被称为双重稀疏性的有效调整(DSEE),旨在实现两个关键目标:(i)参数有效的微调 - 通过在预训练的权重的顶部强制实施稀疏性的低级更新; (ii)资源有效的推论 - 通过鼓励对最终微调模型的稀疏重量结构。我们通过统一的方法在预训练的语言模型中利用非结构化和结构化的稀疏模式来利用这两个方向的稀疏性。广泛的实验和深入研究,对数十个数据集进行了不同的网络骨干(即Bert,Roberta和GPT-2),始终显示出令人印象深刻的参数 - /推理效率,同时保持竞争性下游性能。例如,DSEE在达到可比性能的同时节省了约25%的推理拖失lo,在BERT上具有0.5%的可训练参数。代码可在https://github.com/vita-group/dsee中找到。
translated by 谷歌翻译