在机器学习中,对神经网络集合(NNE)(NNE)引起了新的兴趣,从而从一组较小的模型(而不是从单个较大的模型)中获得了预测作为汇总的预测。在这里,我们展示了如何使用随机系统中稀有轨迹的技术来定义和训练NNE。我们根据模型参数的轨迹定义一个NNE,在简单的,离散的时间,扩散动力学下,并通过将这些轨迹偏向较小的时间整合损失来训练NNE,并由适当的计数领域控制,这些领域的作用是超参数。我们证明了该技术在一系列简单监督的学习任务上的生存能力。与更常规的基于梯度的方法相比,我们讨论了轨迹采样方法的潜在优势。
translated by 谷歌翻译
罕见事件计算研究中的一个中心对象是委员会函数。尽管计算成本高昂,但委员会功能编码涉及罕见事件的过程的完整机械信息,包括反应率和过渡状态合奏。在过渡路径理论(TPT)的框架下,最近的工作[1]提出了一种算法,其中反馈回路融合了一个神经网络,该神经网络将委员会功能建模为重要性采样,主要是伞形采样,该摘要收集了自适应训练所需的数据。在这项工作中,我们显示需要进行其他修改以提高算法的准确性。第一个修改增加了监督学习的要素,这使神经网络通过拟合从短分子动力学轨迹获得的委员会值的样本均值估计来改善其预测。第二个修改用有限的温度字符串(FTS)方法代替了基于委员会的伞采样,该方法可以在过渡途径的区域中进行均匀抽样。我们测试了具有非凸电势能的低维系统的修改,可以通过分析或有限元方法找到参考解决方案,并显示如何将监督学习和FTS方法组合在一起,从而准确地计算了委员会功能和反应速率。我们还为使用FTS方法的算法提供了错误分析,使用少数样品在训练过程中可以准确估算反应速率。然后将这些方法应用于未知参考溶液的分子系统,其中仍然可以获得委员会功能和反应速率的准确计算。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
标准化流量是一类深生成模型,比传统的蒙特卡洛模拟更有效地为晶格场理论提供了有希望的途径。在这项工作中,我们表明,随机归一化流的理论框架,其中神经网络层与蒙特卡洛更新结合在一起,与基于jarzynski平等的不平衡模拟的基础相同,这些模拟最近已被部署以计算计算晶格计理论的自由能差异。我们制定了一种策略,以优化这种扩展类别的生成模型的效率和应用程序的示例。
translated by 谷歌翻译
从非正规化概率分布的抽样是机器学习中的基本问题,包括贝叶斯建模,潜在因子推断和基于能源的模型训练。在几十年的研究之后,尽管收敛缓慢,但MCMC的变化仍然是抽样的默认方法。辅助神经模型可以学习加速MCMC,但训练额外模型的开销可能是禁止的。我们通过具有非牛顿势头的新的汉密尔顿动态提出了对这个问题的根本不同的方法。与MCMC蒙特卡洛等MCMC接近相比,不需要随机步骤。相反,在扩展状态空间中提出的确定性动态精确地对能量函数指定的目标分布,在ergodicity的假设下。或者,可以将动态解释为在没有训练的情况下对指定的能量模型进行采样的标准化流程。所提出的能量采样哈密尔顿(ESH)动态有一个简单的形式,可以用现有的颂歌解决,但我们推出了一个专业的求解器,它表现出更好的性能。 ESH Dynamics会收敛于其MCMC竞争对手的速度更快,更稳定地培训神经网络能量模型。
translated by 谷歌翻译
了解复杂分子过程的动力学通常与长期稳定状态之间不经常过渡的研究有关。进行此类罕见事件采样的标准方法是使用轨迹空间中的随机步行生成过渡路径的集合。然而,这伴随着随后访问的路径之间的较强相关性和在平行采样过程中的内在难度之间存在很强的相关性。我们建议基于神经网络生成的配置的过渡路径采样方案。这些是采用归一化流量获得的,即能够从给定分布中生成非相关样品的神经网络类。使用这种方法,不仅删除了访问的路径之间的相关性,而且采样过程很容易平行。此外,通过调节归一化流,可以将配置的采样转向感兴趣的区域。我们表明,这允许解决过渡区域的热力学和动力学。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
随机梯度下降(SGD)是深度学习技术的工作主控算法。在训练阶段的每个步骤中,从训练数据集中抽取迷你样本,并且根据该特定示例子集的性能调整神经网络的权重。迷你批量采样过程将随机性动力学引入梯度下降,具有非琐碎的状态依赖性噪声。我们在原型神经网络模型中表征了SGD的随机和最近引入的变体持久性SGD。在占地面定的制度中,在最终训练误差是阳性的情况下,SGD动力学达到静止状态,我们从波动耗散定理定义了从动态平均场理论计算的波动定理的有效温度。我们使用有效温度来量化SGD噪声的幅度作为问题参数的函数。在过度参数化的制度中,在训练错误消失的情况下,我们通过计算系统的两个副本之间的平均距离来测量SGD的噪声幅度,并具有相同的初始化和两个不同的SGD噪声的实现。我们发现这两个噪声测量与问题参数的函数类似。此外,我们观察到嘈杂的算法导致相应的约束满足问题的更广泛的决策边界。
translated by 谷歌翻译
我们介绍了一个名为统计信息的神经网络(SINN)的机器学习框架,用于从数据中学习随机动力学。从理论上讲,这种新的架构是受到随机系统的通用近似定理的启发,我们在本文中介绍了它,以及用于随机建模的投影手术形式。我们设计了训练神经网络模型的机制,以重现目标随机过程的正确\ emph {统计}行为。数值模拟结果表明,受过良好训练的SINN可以可靠地近似马尔可夫和非马克维亚随机动力学。我们证明了SINN对粗粒问题和过渡动力学的建模的适用性。此外,我们表明可以在时间粗粒的数据上训练所获得的减少阶模型,因此非常适合稀有事实模拟。
translated by 谷歌翻译
我们分析了通过梯度流通过自洽动力场理论训练的无限宽度神经网络中的特征学习。我们构建了确定性动力学阶参数的集合,该参数是内部产物内核,用于在成对的时间点中,每一层中隐藏的单位激活和梯度,从而减少了通过训练对网络活动的描述。这些内核顺序参数共同定义了隐藏层激活分布,神经切线核的演变以及因此输出预测。我们表明,现场理论推导恢复了从Yang和Hu(2021)获得张量程序的无限宽度特征学习网络的递归随机过程。对于深线性网络,这些内核满足一组代数矩阵方程。对于非线性网络,我们提供了一个交替的采样过程,以求助于内核顺序参数。我们提供了与各种近似方案的自洽解决方案的比较描述。最后,我们提供了更现实的设置中的实验,这些实验表明,在CIFAR分类任务上,在不同宽度上保留了CNN的CNN的损耗和内核动力学。
translated by 谷歌翻译
我们提供了对神经马尔可夫链蒙特卡罗模拟中的自相关的深度研究,该版本的传统大都会算法采用神经网络来提供独立的建议。我们使用二维ising模型说明了我们的想法。我们提出了几次自相关时间的估算,其中一些灵感来自于为大都市独立采样器导出的分析结果,我们将其与逆温度$ \ Beta $的函数进行比较和研究。基于我们提出替代损失功能,并研究其对自动系列的影响。此外,我们调查对自动相关时间的神经网络培训过程中强加系统对称($ Z_2 $和/或翻译)的影响。最终,我们提出了一种包含局部热浴更新的方案。讨论了上述增强功能的影响为16美元16美元旋转系统。我们的调查结果摘要可以作为实施更复杂模型的神经马尔可夫链蒙特卡罗模拟的指导。
translated by 谷歌翻译
我们开发了一种多尺度方法,以从实验或模拟中观察到的物理字段或配置的数据集估算高维概率分布。通过这种方式,我们可以估计能量功能(或哈密顿量),并有效地在从统计物理学到宇宙学的各个领域中生成多体系统的新样本。我们的方法 - 小波条件重新归一化组(WC-RG) - 按比例进行估算,以估算由粗粒磁场来调节的“快速自由度”的条件概率的模型。这些概率分布是由与比例相互作用相关的能量函数建模的,并以正交小波为基础表示。 WC-RG将微观能量函数分解为各个尺度上的相互作用能量之和,并可以通过从粗尺度到细度来有效地生成新样品。近相变,它避免了直接估计和采样算法的“临界减速”。理论上通过结合RG和小波理论的结果来解释这一点,并为高斯和$ \ varphi^4 $字段理论进行数值验证。我们表明,多尺度WC-RG基于能量的模型比局部电位模型更通用,并且可以在所有长度尺度上捕获复杂的多体相互作用系统的物理。这是针对反映宇宙学中暗物质分布的弱透镜镜头的,其中包括与长尾概率分布的长距离相互作用。 WC-RG在非平衡系统中具有大量的潜在应用,其中未知基础分布{\ it先验}。最后,我们讨论了WC-RG和深层网络体系结构之间的联系。
translated by 谷歌翻译
我们确定有效的随机微分方程(SDE),用于基于精细的粒子或基于试剂的模拟的粗糙观察结果;然后,这些SDE提供了精细规模动力学的有用的粗替代模型。我们通过神经网络近似这些有效的SDE中的漂移和扩散率函数,可以将其视为有效的随机分解。损失函数的灵感来自于已建立的随机数值集成剂的结构(在这里,欧拉 - 玛鲁山和米尔斯坦);因此,我们的近似值可以受益于这些基本数值方案的向后误差分析。当近似粗的模型(例如平均场方程)可用时,它们还自然而然地适合“物理信息”的灰色盒识别。 Langevin型方程和随机部分微分方程(SPDE)的现有数值集成方案也可以用于训练;我们在随机强迫振荡器和随机波方程式上证明了这一点。我们的方法不需要长时间的轨迹,可以在散落的快照数据上工作,并且旨在自然处理每个快照的不同时间步骤。我们考虑了预先知道粗糙的集体观察物以及必须以数据驱动方式找到它们的情况。
translated by 谷歌翻译
This paper proposes a new optimization algorithm called Entropy-SGD for training deep neural networks that is motivated by the local geometry of the energy landscape. Local extrema with low generalization error have a large proportion of almost-zero eigenvalues in the Hessian with very few positive or negative eigenvalues. We leverage upon this observation to construct a local-entropy-based objective function that favors well-generalizable solutions lying in large flat regions of the energy landscape, while avoiding poorly-generalizable solutions located in the sharp valleys. Conceptually, our algorithm resembles two nested loops of SGD where we use Langevin dynamics in the inner loop to compute the gradient of the local entropy before each update of the weights. We show that the new objective has a smoother energy landscape and show improved generalization over SGD using uniform stability, under certain assumptions. Our experiments on convolutional and recurrent networks demonstrate that Entropy-SGD compares favorably to state-of-the-art techniques in terms of generalization error and training time.
translated by 谷歌翻译
在随机抽样方法中,马尔可夫链蒙特卡洛算法是最重要的。在随机行走都市方案中,我们利用分析方法和数值方法的结合研究了它们的收敛性能。我们表明,偏离目标稳态分布的偏差特征是定位过渡的函数,这是定义随机步行的尝试跳跃的特征长度。该过渡大大改变了误差,而误差是通过不完整的收敛引入的,并区分了两个方案,其中弛豫机制分别受扩散和排斥分别受到限制。
translated by 谷歌翻译
我们在强烈混合(混乱)方面基于能源持续的哈密顿动力学进行了优化的新框架,并在分析和数值上建立其关键特性。该原型是对出生式动力学的离散化,取决于目标函数,其平方相对速度限制。这类无摩擦,节能优化器毫不动摇地进行,直到自然放慢速度在最小的损失附近,这主要是系统的相位空间体积。我们从对动力台球等混乱系统的研究构建,我们制定了一种特定的算法,在机器学习和解决PDE解决任务(包括概括)方面具有良好的性能。它不能以高的局部最低限度停止,这是非凸损失功能的优势,并且比浅谷中的GD+动量更快。
translated by 谷歌翻译
Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a Metropolis-Hastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of HMC methods is the required gradient computation for simulation of the Hamiltonian dynamical system-such computation is infeasible in problems involving a large sample size or streaming data. Instead, we must rely on a noisy gradient estimate computed from a subset of the data. In this paper, we explore the properties of such a stochastic gradient HMC approach. Surprisingly, the natural implementation of the stochastic approximation can be arbitrarily bad. To address this problem we introduce a variant that uses second-order Langevin dynamics with a friction term that counteracts the effects of the noisy gradient, maintaining the desired target distribution as the invariant distribution. Results on simulated data validate our theory. We also provide an application of our methods to a classification task using neural networks and to online Bayesian matrix factorization.
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
当前的深度神经网络被高度参数化(多达数十亿个连接权重)和非线性。然而,它们几乎可以通过梯度下降算法的变体完美地拟合数据,并达到预测准确性的意外水平,而不会过度拟合。这些是巨大的结果,无视统计学习的预测,并对非凸优化构成概念性挑战。在本文中,我们使用来自无序系统的统计物理学的方法来分析非凸二进制二进制神经网络模型中过度参数化的计算后果,该模型对从结构上更简单但“隐藏”网络产生的数据进行了培训。随着连接权重的增加,我们遵循误差损失函数不同最小值的几何结构的变化,并将其与学习和概括性能相关联。当解决方案开始存在时,第一次过渡发生在所谓的插值点(完美拟合变得可能)。这种过渡反映了典型溶液的特性,但是它是尖锐的最小值,难以采样。差距后,发生了第二个过渡,并具有不同类型的“非典型”结构的不连续外观:重量空间的宽区域,这些区域特别是解决方案密度且具有良好的泛化特性。两种解决方案共存,典型的解决方案的呈指数数量,但是从经验上讲,我们发现有效的算法采样了非典型,稀有的算法。这表明非典型相变是学习的相关阶段。与该理论建议的可观察到的现实网络的数值测试结果与这种情况一致。
translated by 谷歌翻译
在神经网络的文献中,Hebbian学习传统上是指Hopfield模型及其概括存储原型的程序(即仅经历过一次形成突触矩阵的确定模式)。但是,机器学习中的“学习”一词是指机器从提供的数据集中提取功能的能力(例如,由这些原型的模糊示例制成),以制作自己的不可用原型的代表。在这里,给定一个示例示例,我们定义了一个有监督的学习协议,通过该协议可以通过该协议来推断原型,并检测到正确的控制参数(包括数据集的大小和质量)以描绘系统性能的相图。我们还证明,对于无结构数据集,配备了该监督学习规则的Hopfield模型等同于受限的Boltzmann机器,这表明了最佳且可解释的培训例程。最后,这种方法被推广到结构化的数据集:我们在分析的数据集中突出显示了一个准剥离组织(让人联想到复制对称性 - 对称性),因此,我们为其(部分)分开,为其(部分)删除层引入了一个附加的“复制性隐藏层”,该证明可以将MNIST分类从75%提高到95%,并提供有关深度体系结构的新观点。
translated by 谷歌翻译