在冬季场景中,在雪下拍摄的图像的降解可能非常复杂,其中雪降解的空间分布因图像而异。最近的方法采用深层神经网络,直接从雪图像中恢复清洁的场景。但是,由于复杂的雪降解差异导致悖论,实时实现可靠的高清图像是一个巨大的挑战。我们开发了一种新型有效的金字塔网络,具有非对称编码器架构,用于实时高清图像。我们提出的网络的一般思想是通过功能中的多尺度特征流充分利用多尺度的特征流。与以前最先进的方法相比,我们的方法实现了更好的复杂性 - 性能取舍,并有效地处理了高清和超高清图像的处理困难。在三个大规模图像上进行的广泛实验表明,我们的方法超过了所有最新方法,既有数量又定性地超过了大幅度,从而将PSNR度量从31.76 dB提高到34.10 dB,升至34.10 dB。 SRRS测试数据集上的28.29 dB至30.87 dB。
translated by 谷歌翻译
在恶劣天气下降雪场景的图像恢复是一项艰巨的任务。雪图像具有复杂的降解,并在干净的图像上混乱,改变了干净的图像的分布。以前基于CNN的方法由于缺乏特定的全球建模能力,因此在恢复雪场景中完全恢复了雪场的挑战。在本文中,我们将视觉变压器应用于从单个图像中去除积雪的任务。具体而言,我们建议沿通道拆分的并行网络体系结构分别执行本地功能改进和全局信息建模。我们利用频道洗牌操作来结合其各自的优势以增强网络性能。其次,我们提出了MSP模块,该模块利用多规模的AVGPOOL来汇总不同大小的信息,并同时对多头自我注意力进行多尺度投影自我注意,以提高模型在不同规模下降下的表示能力。最后,我们设计了一个轻巧,简单的本地捕获模块,可以完善模型的本地捕获能力。在实验部分,我们进行了广泛的实验以证明我们方法的优越性。我们比较了三个雪场数据集上的先前清除方法。实验结果表明,我们的方法超过了更少的参数和计算的最新方法。在CSD测试数据集上,我们实现了1.99dB和SSIM 0.03的实质增长。在SRR和SNOW100K数据集上,与Transweather方法相比,我们还增加了2.47dB和1.62dB,在SSIM中提高了0.03。在视觉比较部分中,我们的MSP形式比现有方法获得了更好的视觉效果,证明了我们方法的可用性。
translated by 谷歌翻译
在现实世界中,在雾度下拍摄的图像的降解可以是非常复杂的,其中雾度的空间分布从图像变化到图像。最近的方法采用深神经网络直接从朦胧图像中恢复清洁场景。然而,由于悖论由真正捕获的雾霾的变化和当前网络的固定退化参数引起的悖论,最近在真实朦胧的图像上的脱水方法的泛化能力不是理想的。解决现实世界建模问题阴霾退化,我们建议通过对不均匀雾度分布的鉴定和建模密度来解决这个问题。我们提出了一种新颖的可分离混合注意力(SHA)模块来编码雾霾密度,通过捕获正交方向上的特征来实现这一目标。此外,提出了密度图以明确地模拟雾度的不均匀分布。密度图以半监督方式生成位置编码。这种雾度密度感知和建模有效地捕获特征水平的不均匀分布性变性。通过SHA和密度图的合适组合,我们设计了一种新型的脱水网络架构,实现了良好的复杂性性能权衡。两个大规模数据集的广泛实验表明,我们的方法通过量化和定性地通过大幅度超越所有最先进的方法,将最佳发布的PSNR度量从28.53 DB升高到Haze4K测试数据集和在SOTS室内测试数据集中的37.17 dB至38.41 dB。
translated by 谷歌翻译
否决单图是一项普遍但又具有挑战性的任务。复杂的降雪降解和各种降解量表需要强大的代表能力。为了使否定的网络看到各种降雪并建模本地细节和全球信息的上下文相互作用,我们提出了一种称为Snowformer的功能强大的建筑。首先,它在编码器中执行比例感知功能聚合,以捕获各种降解的丰富积雪信息。其次,为了解决大规模降级,它使用了解码器中的新颖上下文交互变压器块,该互动器块在全球上下文交互中从前范围内的局部细节和全局信息进行了上下文交互。并引入本地上下文互动可改善场景细节的恢复。第三,我们设计了一个异质的特征投影头,该功能投影头逐渐融合了编码器和解码器的特征,并将精制功能投影到干净的图像中。广泛的实验表明,所提出的雪诺形雪孔比其他SOTA方法取得了重大改进。与SOTA单图像HDCW-NET相比,它在CSD测试集上将PSNR度量提高了9.2dB。此外,与一般图像恢复体系结构NAFNET相比,PSNR的增加5.13db,这验证了我们的雪诺形雪地降雪任务的强大表示能力。该代码在\ url {https://github.com/ephemeral182/snowformer}中发布。
translated by 谷歌翻译
在恶劣天气下的图像修复是一项艰巨的任务。过去的大多数作品都集中在消除图像中的雨水和阴霾现象。但是,雪也是一种极为普遍的大气现象,它将严重影响高级计算机视觉任务的性能,例如对象检测和语义分割。最近,已经提出了一些用于降雪的方法,大多数方法直接将雪图像作为优化对象。但是,雪地点和形状的分布很复杂。因此,未能有效地检测雪花 /雪连胜将影响降雪并限制模型性能。为了解决这些问题,我们提出了一个雪地掩模的自适应残留网络(SMGARN)。具体而言,SMGARN由三个部分组成,即Mask-Net,Guidance-Fusion Network(GF-NET)和重建-NET。首先,我们构建了一个以自像素的注意(SA)和跨像素的注意(CA),以捕获雪花的特征并准确地定位了雪的位置,从而预测了准确的雪山。其次,预测的雪面被发送到专门设计的GF-NET中,以适应指导模型去除雪。最后,使用有效的重建网络来消除面纱效果并纠正图像以重建最终的无雪图像。广泛的实验表明,我们的SMGARN数值优于所有现有的降雪方法,并且重建的图像在视觉对比度上更清晰。所有代码都将可用。
translated by 谷歌翻译
Image restoration under hazy weather condition, which is called single image dehazing, has been of significant interest for various computer vision applications. In recent years, deep learning-based methods have achieved success. However, existing image dehazing methods typically neglect the hierarchy of features in the neural network and fail to exploit their relationships fully. To this end, we propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD), which is based on feature fusion and contrastive learning strategies. HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL). Specifically, the core design in the HDN is a Hierarchical Interaction Module, which utilizes multi-scale activation to revise the feature responses hierarchically. To cooperate with the training of HDN, we propose HCL which performs contrastive learning on hierarchically paired exemplars, facilitating haze removal. Extensive experiments on public datasets, RESIDE, HazeRD, and DENSE-HAZE, demonstrate that HCD quantitatively outperforms the state-of-the-art methods in terms of PSNR, SSIM and achieves better visual quality.
translated by 谷歌翻译
这项工作研究了关节降雨和雾霾清除问题。在现实情况下,雨水和阴霾通常是两个经常共同发生的共同天气现象,可以极大地降低场景图像的清晰度和质量,从而导致视觉应用的性能下降,例如自动驾驶。但是,在场景图像中共同消除雨水和雾霾是艰难而挑战,在那里,阴霾和雨水的存在以及大气光的变化都可以降低现场信息。当前的方法集中在污染部分上,因此忽略了受大气光的变化影响的场景信息的恢复。我们提出了一个新颖的深神经网络,称为不对称双重编码器U-NET(ADU-NET),以应对上述挑战。 ADU-NET既产生污染物残留物,又产生残留的现场,以有效地去除雨水和雾霾,同时保留场景信息的保真度。广泛的实验表明,我们的工作在合成数据和现实世界数据基准(包括RainCityScapes,Bid Rain和Spa-data)的相当大的差距上优于现有的最新方法。例如,我们在RainCityScapes/spa-data上分别将最新的PSNR值提高了2.26/4.57。代码将免费提供给研究社区。
translated by 谷歌翻译
Image restoration tasks demand a complex balance between spatial details and high-level contextualized information while recovering images. In this paper, we propose a novel synergistic design that can optimally balance these competing goals. Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs, thereby breaking down the overall recovery process into more manageable steps. Specifically, our model first learns the contextualized features using encoder-decoder architectures and later combines them with a high-resolution branch that retains local information. At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features. A key ingredient in such a multi-stage architecture is the information exchange between different stages. To this end, we propose a twofaceted approach where the information is not only exchanged sequentially from early to late stages, but lateral connections between feature processing blocks also exist to avoid any loss of information. The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets across a range of tasks including image deraining, deblurring, and denoising. The source code and pre-trained models are available at https://github.com/swz30/MPRNet.
translated by 谷歌翻译
从图像中删除像雨,雾和雪一样的恶劣天气条件是许多应用中的重要问题。在文献中提出的大多数方法旨在处理只是去除一种劣化。最近,建议使用神经架构搜索的基于CNN的方法(一体化),以一次去除所有天气条件。但是,它具有大量参数,因为它使用多个编码器来满足每个天气删除任务,并且仍然具有改进其性能的范围。在这项工作中,我们专注于开发一个有效的解决方案,以了解所有恶劣的恶劣气象删除问题。为此,我们提出了一个基于变压器的端到端模型的Transweather,只需一个编码器和可通过任何天气状况恢复图像恢复的解码器。具体地,我们利用了一种使用内部变压器块的新型变压器编码器,以增强贴片内的注意力,以有效地消除较小的天气降级。我们还介绍了一个具有学习天气型嵌入的变压器解码器,可调整​​手头的天气降级。 Transweather通过一体化网络以及针对特定任务的微调的方法跨越多个测试数据集的显着改进。特别是,Transweather在Test1(Rain + Fog)DataSet上的当前最先进的最新状态将+6.34 PSNR推动雪橇上的Test1(Rain + Fog)DataSet +4.93 PSNR和rainDrop测试数据集上的+3.11 psnr。近天气天气也在现实世界测试图像上验证,发现比以前的方法更有效。可以在https://github.com/jeya-maria-jose/transweather访问实施代码和预先训练的权重。
translated by 谷歌翻译
在本文中,我们呈现了UFFORER,一种用于图像恢复的有效和高效的变换器架构,其中我们使用变压器块构建分层编码器解码器网络。在UFFAR中,有两个核心设计。首先,我们介绍了一个新颖的本地增强型窗口(Lewin)变压器块,其执行基于窗口的自我关注而不是全局自我关注。它显着降低了高分辨率特征映射的计算复杂性,同时捕获本地上下文。其次,我们提出了一种以多尺度空间偏置的形式提出了一种学习的多尺度恢复调制器,以调整UFFORER解码器的多个层中的特征。我们的调制器展示了卓越的能力,用于恢复各种图像恢复任务的详细信息,同时引入边缘额外参数和计算成本。通过这两个设计提供支持,UFFORER享有高能力,可以捕获本地和全局依赖性的图像恢复。为了评估我们的方法,在几种图像恢复任务中进行了广泛的实验,包括图像去噪,运动脱棕,散焦和污染物。没有钟声和口哨,与最先进的算法相比,我们的UFormer实现了卓越的性能或相当的性能。代码和模型可在https://github.com/zhendongwang6/uformer中找到。
translated by 谷歌翻译
在过去几年中,深度卷积神经网络在低光图像增强中取得了令人印象深刻的成功。深度学习方法大多通过堆叠网络结构并加深网络深度来提高特征提取的能力。在单个时导致更多的运行时间成本为了减少推理时间,在完全提取本地特征和全局特征的同时,我们通过SGN定期,我们提出了基于广泛的自我引导网络(Absgn)的现实世界低灯图像增强。策略是一种广泛的策略处理不同曝光的噪音。所提出的网络被许多主流基准验证.Aditional实验结果表明,所提出的网络优于最先进的低光图像增强解决方案。
translated by 谷歌翻译
随着移动设备的快速开发,现代使用的手机通常允许用户捕获4K分辨率(即超高定义)图像。然而,对于图像进行示范,在低级视觉中,一项艰巨的任务,现有作品通常是在低分辨率或合成图像上进行的。因此,这些方法对4K分辨率图像的有效性仍然未知。在本文中,我们探索了Moire模式的删除,以进行超高定义图像。为此,我们提出了第一个超高定义的演示数据集(UHDM),其中包含5,000个现实世界4K分辨率图像对,并对当前最新方法进行基准研究。此外,我们提出了一个有效的基线模型ESDNET来解决4K Moire图像,其中我们构建了一个语义对准的比例感知模块来解决Moire模式的尺度变化。广泛的实验表明了我们的方法的有效性,这可以超过最轻巧的优于最先进的方法。代码和数据集可在https://xinyu-andy.github.io/uhdm-page上找到。
translated by 谷歌翻译
使用注意机制的深度卷积神经网络(CNN)在动态场景中取得了巨大的成功。在大多数这些网络中,只能通过注意图精炼的功能传递到下一层,并且不同层的注意力图彼此分开,这并不能充分利用来自CNN中不同层的注意信息。为了解决这个问题,我们引入了一种新的连续跨层注意传播(CCLAT)机制,该机制可以利用所有卷积层的分层注意信息。基于CCLAT机制,我们使用非常简单的注意模块来构建一个新型残留的密集注意融合块(RDAFB)。在RDAFB中,从上述RDAFB的输出中推断出的注意图和每一层直接连接到后续的映射,从而导致CRLAT机制。以RDAFB为基础,我们为动态场景Deblurring设计了一个名为RDAFNET的有效体系结构。基准数据集上的实验表明,所提出的模型的表现优于最先进的脱毛方法,并证明了CCLAT机制的有效性。源代码可在以下网址提供:https://github.com/xjmz6/rdafnet。
translated by 谷歌翻译
卷积神经网络(CNN)和变压器在多媒体应用中取得了巨大成功。但是,几乎没有努力有效,有效地协调这两个架构以满足图像的范围。本文旨在统一这两种架构,以利用其学习优点来降低图像。特别是,CNN的局部连通性和翻译等效性以及变压器中自我注意力(SA)的全球聚合能力被完全利用用于特定的局部环境和全球结构表示。基于雨水分布揭示降解位置和程度的观察,我们在帮助背景恢复之前引入退化,并因此呈现关联细化方案。提出了一种新型的多输入注意模块(MAM),以将降雨的去除和背景恢复关联。此外,我们为模型配备了有效的深度可分离卷积,以学习特定的特征表示并权衡计算复杂性。广泛的实验表明,我们提出的方法(称为ELF)的表现平均比最先进的方法(MPRNET)优于0.25 dB,但仅占其计算成本和参数的11.7 \%和42.1 \%。源代码可从https://github.com/kuijiang94/magic-elf获得。
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
派生是一个重要而基本的计算机视觉任务,旨在消除在下雨天捕获的图像或视频中的雨条纹和累积。现有的派威方法通常会使雨水模型的启发式假设,这迫使它们采用复杂的优化或迭代细化以获得高回收质量。然而,这导致耗时的方法,并影响解决从假设偏离的雨水模式的有效性。在本文中,我们通过在没有复杂的雨水模型假设的情况下,通过在没有复杂的雨水模型假设的情况下制定污染作为预测滤波问题的简单而有效的污染方法。具体地,我们识别通过深网络自适应地预测适当的核的空间变型预测滤波(SPFILT以过滤不同的各个像素。由于滤波可以通过加速卷积来实现,因此我们的方法可以显着效率。我们进一步提出了eFderain +,其中包含三个主要贡献来解决残留的雨迹,多尺度和多样化的雨水模式而不会损害效率。首先,我们提出了不确定感知的级联预测滤波(UC-PFILT),其可以通过预测的内核来识别重建清洁像素的困难,并有效地移除残留的雨水迹线。其次,我们设计重量共享多尺度扩张过滤(WS-MS-DFILT),以处理多尺度雨条纹,而不会损害效率。第三,消除各种雨水模式的差距,我们提出了一种新颖的数据增强方法(即Rainmix)来培养我们的深层模型。通过对不同变体的复杂分析的所有贡献相结合,我们的最终方法在恢复质量和速度方面优于四个单像辐照数据集和一个视频派威数据集的基线方法。
translated by 谷歌翻译
深度学习算法最近在自然和合成的多雨数据集中达到了有希望的污染性能。作为必不可少的低级预处理阶段,派威网络应清除雨条纹并保留精细的语义细节。但是,大多数现有方法只考虑低级图像恢复。这限制了它们在需要精确语义信息的高级任务中的表现。为了解决这个问题,在本文中,我们基于对单个图像放置的对比学习来呈现分段感知逐行网络(SAPNET)。我们开始使用具有渐进扩张单元(PDU)的轻量级污染网络(PDU)。 PDU可以显着扩展接收领域,并在没有对多尺度图像上的沉重计算的情况下表征多尺度雨条纹。这项工作的一个基本方面是一个无人监督的背景分割(UBS)网络用Imagenet和高斯权重初始化。瑞银可以忠实地保留图像的语义信息,并改善解释照片的概括能力。此外,我们介绍了一种感知对比丧失(PCL)和学习的感知图像相似性损失(LPIS)来调节模型学习。通过利用雨天图像和地面,作为VGG-16潜在空间中的负片和正样品,我们以完全约束的方式弥合托盘图像和地面的微妙语义细节。综合性和现实世界多雨图像的综合实验显示我们的模型超越了顶级性能的方法,并具有相当大的疗效。 pytorch实现可在https://github.com/shenzheng2000/sapnet-for-image -dering。
translated by 谷歌翻译
基于深度卷积神经网络(CNN)的单图像飞机方法已取得了重大成功。以前的方法致力于通过增加网络的深度和宽度来改善网络的性能。当前的方法着重于增加卷积内核的大小,以通过受益于更大的接受场来增强其性能。但是,直接增加卷积内核的大小会引入大量计算开销和参数。因此,本文设计了一个新型的大内核卷积驱动块(LKD块),该磁带(LKD块)由分解深度大核卷积块(DLKCB)和通道增强的进料前向前网络(CEFN)组成。设计的DLKCB可以将深度大的内核卷积分为较小的深度卷积和深度扩张的卷积,而无需引入大量参数和计算开销。同时,设计的CEFN将通道注意机制纳入馈电网络中,以利用重要的通道并增强鲁棒性。通过组合多个LKD块和上向下的采样模块,可以进行大内核卷积DeHaze网络(LKD-NET)。评估结果证明了设计的DLKCB和CEFN的有效性,而我们的LKD-NET优于最先进的功能。在SOTS室内数据集上,我们的LKD-NET极大地优于基于变压器的方法Dehamer,只有1.79%#PARAM和48.9%的FLOPS。我们的LKD-NET的源代码可在https://github.com/swu-cs-medialab/lkd-net上获得。
translated by 谷歌翻译
由于卷积神经网络在从大规模数据中学习可概括的图像先验方面表现良好,因此这些模型已被广泛用于图像DeNoise任务。但是,在复杂模型上,计算复杂性也急剧增加。在本文中,我们提出了一个新颖的轻巧互补注意模块,其中包括密度模块和稀疏模块,该模块可以合作地挖掘浓密和稀疏功能,以供特征互补学习,以构建有效的轻质体系结构。此外,为了减少因denoing而导致的细节丢失,本文构建了基于梯度的结构保护分支。我们利用基于梯度的分支来获取其他结构先验来进行降级,并使模型通过优化梯度损失优化,使模型更加关注图像几何细节。基于上述,我们提出了一个具有双分支的有效的UNET结构化网络,视觉结果显示这可以有效地保留原始图像的结构细节,我们评估了包括Sidd和DND在内的基准,其中Scanet在PSNR和SSIM中实现了最先进的性能,同时大大降低了计算成本。
translated by 谷歌翻译
多尺度体系结构和注意力模块在许多基于深度学习的图像脱落方法中都显示出有效性。但是,将这两个组件手动设计和集成到神经网络中需要大量的劳动力和广泛的专业知识。在本文中,高性能多尺度的细心神经体系结构搜索(MANAS)框架是技术开发的。所提出的方法为图像脱落任务的最爱的多个灵活模块制定了新的多尺度注意搜索空间。在搜索空间下,建立了多尺度的细胞,该单元被进一步用于构建功能强大的图像脱落网络。通过基于梯度的搜索算法自动搜索脱毛网络的内部多尺度架构,该算法在某种程度上避免了手动设计的艰巨过程。此外,为了获得强大的图像脱落模型,还提出了一种实用有效的多到一对训练策略,以允许去磨损网络从具有相同背景场景的多个雨天图像中获取足够的背景信息,与此同时,共同优化了包括外部损失,内部损失,建筑正则损失和模型复杂性损失在内的多个损失功能,以实现可靠的损伤性能和可控的模型复杂性。对合成和逼真的雨图像以及下游视觉应用(即反对检测和分割)的广泛实验结果始终证明了我们提出的方法的优越性。
translated by 谷歌翻译