TorchXrayVision是一个开源软件库,用于使用胸部X射线数据集和深度学习模型。它为广泛的公共可公共胸部X射线数据集提供了一个通用的接口和通用预处理链。此外,通过库培训具有不同架构的许多分类和表示模型,通过库可获得不同的数据组合,以用作基线或特征提取器。
translated by 谷歌翻译
在COVID-19大流行期间,在COVID-19诊断的紧急环境中进行的大量成像量导致临床CXR获取的差异很大。在所使用的CXR投影,添加图像注释以及临床图像的旋转程度和旋转程度中可以看到这种变化。图像分析社区试图通过开发自动化的CoVID-19诊断算法来减轻大流行期间过度拉伸放射学部门的负担,该诊断算法是CXR成像的输入。已利用大量公开的CXR数据集来改善CoVID-19诊断的深度学习算法。然而,公开可用数据集中临床可获得的CXR的可变质量可能会对算法性能产生深远的影响。 COVID-19可以通过图像标签等图像上的非动物特征的算法来推断诊断。这些成像快捷方式可能是数据集特定的,并限制了AI系统的概括性。因此,了解和纠正CXR图像中的关键潜在偏差是CXR图像分析之前的重要第一步。在这项研究中,我们提出了一种简单有效的逐步方法,以预处理Covid-19胸部X射线数据集以消除不希望的偏见。我们进行消融研究以显示每个单个步骤的影响。结果表明,使用我们提出的管道可以将基线共证检测算法的精度提高到13%。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)占据了计算机视野的领域,这要归功于它们提取功能及其在分类问题中出色的表现,例如在自动分析X射线中。不幸的是,这些神经网络被认为是黑盒算法,即不可能了解该算法如何实现最终结果。要将这些算法应用于不同领域并测试方法论的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实生活中,例如胸部X射线射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是类不平衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了可解释的AI技术。该技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即它们标志着专家将用来做出决定的区域。
translated by 谷歌翻译
近年来,随着深度学习技术的不断增长和不断增长的潜力,公开可用的医疗数据集成为实现医疗领域诊断算法的可重现开发的关键因素。医疗数据包含敏感的患者相关信息,因此通常通过删除患者识别符(例如出版前的患者名称)来匿名。据我们所知,我们是第一个表明训练有素的深度学习系统能够从胸部X射线数据中恢复患者身份的人。我们使用公开可用的大规模ChestX-Ray14数据集证明了这一点,该数据集收集了来自30,805名独特患者的112,120个额叶视图胸部X射线图像。我们的验证系统能够确定两个正面胸部X射线图像是否来自同一人,其AUC为0.9940,分类精度为95.55%。我们进一步强调,拟议的系统即使在初次扫描后的十到十年都可以揭示同一个人。在采用检索方法时,我们会观察到0.9748的地图@r和0.9963的Precision@1。此外,当评估我们在外部数据集上的训练网络(例如CHEXPERT和COVID-19图像数据收集)上,我们达到了高达0.9870的AUC,最高为0.9444的Precision@1的精度为0.9444。基于此高识别率,潜在的攻击者可能会泄漏与患者相关的信息,并另外交叉引用图像以获取更多信息。因此,有敏感内容落入未经授权的手或反对有关患者的意愿的巨大风险。尤其是在Covid-19大流行期间,已经发布了许多胸部X射线数据集以推动研究。因此,此类数据可能容易受到基于深度学习的重新识别算法的潜在攻击。
translated by 谷歌翻译
有必要开发负担得起且可靠的诊断工具,该工具允许包含COVID-19的扩散。已经提出了机器学习(ML)算法来设计支持决策系统以评估胸部X射线图像,事实证明,这些图像可用于检测和评估疾病进展。许多研究文章围绕此主题发表,这使得很难确定未来工作的最佳方法。本文介绍了使用胸部X射线图像应用于COVID-19检测的ML的系统综述,旨在就方法,体系结构,数据库和当前局限性为研究人员提供基线。
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
每年有大约4.5亿人受到肺炎的影响,导致250万人死亡。 Covid-19也影响了1.81亿人,这导致了392万人伤亡。如果早期诊断,两种疾病死亡可能会显着降低。然而,目前诊断肺炎(投诉+胸部X射线)和Covid-19(RT-PCR)的方法分别存在专家放射科医生和时间。在深度学习模型的帮助下,可以从胸部X射线或CT扫描立即检测肺炎和Covid-19。这样,诊断肺炎/ Covid-19的过程可以更有效和普遍地制作。在本文中,我们的目标是引出,解释和评估,定性和定量,深入学习方法的主要进步,旨在检测或定位社区获得的肺炎(帽),病毒肺炎和Covid-19从胸部X-的图像光线和CT扫描。作为一个系统的审查,本文的重点在于解释了深度学习模型架构,该架构已经被修改或从划痕,以便WIWTH对概括性的关注。对于每个模型,本文回答了模型所设计的方式的问题,特定模型克服的挑战以及修改模型到所需规格的折衷。还提供了本文描述的所有模型的定量分析,以量化不同模型的有效性与相似的目标。一些权衡无法量化,因此它们在定性分析中明确提到,在整个纸张中完成。通过在一个地方编译和分析大量的研究细节,其中包含所有数据集,模型架构和结果,我们的目标是为对此字段感兴趣的初学者和当前研究人员提供一站式解决方案。
translated by 谷歌翻译
In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specific needs within the industry. Deep learning in healthcare had become incredibly powerful for supporting clinics and in transforming patient care in general. Deep learning is increasingly being applied for the detection of clinically important features in the images beyond what can be perceived by the naked human eye. Chest X-ray images are one of the most common clinical method for diagnosing a number of diseases such as pneumonia, lung cancer and many other abnormalities like lesions and fractures. Proper diagnosis of a disease from X-ray images is often challenging task for even expert radiologists and there is a growing need for computerized support systems due to the large amount of information encoded in X-Ray images. The goal of this paper is to develop a lightweight solution to detect 14 different chest conditions from an X ray image. Given an X-ray image as input, our classifier outputs a label vector indicating which of 14 disease classes does the image fall into. Along with the image features, we are also going to use non-image features available in the data such as X-ray view type, age, gender etc. The original study conducted Stanford ML Group is our base line. Original study focuses on predicting 5 diseases. Our aim is to improve upon previous work, expand prediction to 14 diseases and provide insight for future chest radiography research.
translated by 谷歌翻译
远程感知的地理空间数据对于包括精确农业,城市规划,灾害监测和反应以及气候变化研究等应用至关重要。对于在类似的计算机视觉任务中的深度神经网络的成功和可用的远程感测图像的纯粹体积的情况下,深入学习方法尤为前接受了许多遥感任务。然而,数据收集方法的方差和地理空间元数据的处理使得深度学习方法的应用成为远程感测的数据不动性。例如,卫星图像通常包括超出红色,绿色和蓝色的额外光谱频带,并且必须连接到可以具有不同坐标系,界限和分辨率的其他地理空间数据源。为了帮助实现遥感应用的深度学习的潜力,我们介绍了一个Pythono库的Torchgeo,用于将地理空间数据集成到Pytorch深度学习生态系统中。 Torchgeo为各种基准数据集,用于通用地理空间数据源的可组合数据集,用于地理空间数据的采样器以及使用多光谱图像的转换的数据加载器。 Torchgeo也是第一个为多光谱卫星图像提供预先训练的模型的库(例如,使用Sentinel 2卫星的所有频段的模型),允许在下游遥感任务上传输学习,其中包含有限的标记数据。我们使用Torchgeo在现有数据集上创建可重复的基准结果,并将我们的建议方法用于直通预处理地理空间图像。 Torchgeo是开源的,可在GitHub上提供:https://github.com/microsoft/torchgeo。
translated by 谷歌翻译
生成模型生成的合成数据可以增强医学成像中渴望数据深度学习模型的性能和能力。但是,(1)(合成)数据集的可用性有限,并且(2)生成模型训练很复杂,这阻碍了它们在研究和临床应用中的采用。为了减少此入口障碍,我们提出了Medigan,Medigan是一站式商店,用于验证的生成型号,该型号是开源框架 - 不合骨python图书馆。 Medigan允许研究人员和开发人员仅在几行代码中创建,增加和域名。在基于收集的最终用户需求的设计决策的指导下,我们基于生成模型的模块化组件(i)执行,(ii)可视化,(iii)搜索和排名以及(iv)贡献。图书馆的可伸缩性和设计是通过其越来越多的综合且易于使用的验证生成模型来证明的,该模型由21种模型组成,利用9种不同的生成对抗网络体系结构在4个域中在11个数据集中训练,即乳腺摄影,内窥镜检查,X射线和X射线和X射线镜头,X射线和X型。 MRI。此外,在这项工作中分析了Medigan的3个应用,其中包括(a)启用社区范围内的限制数据共享,(b)研究生成模型评估指标以及(c)改进临床下游任务。在(b)中,扩展了公共医学图像综合评估和报告标准,我们根据图像归一化和特定于放射学特征提取了Fr \'Echet Inception距离变异性。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
我们评估了深度神经网络(DNN)的泛化能力,培训培训,以使用相对较小的混合数据集将胸部X射线分类为Covid-19,正常或肺炎。我们提出了DNN进行肺分段和分类,堆叠分割模块(U-NET),原始中间模块和分类模块(DenSenet201)。为了评估泛化,我们将DNN与外部数据集(来自不同的地方)测试,并使用贝叶斯推理来估计性能度量的概率分布。我们的DNN在外部测试数据集上实现了0.917 AUC,以及没有分割的DENSENET,0.906。贝叶斯推理表示平均准确性为76.1%和[0.695,0.826] 95%HDI(高密度间隔,浓缩95%的公制概率质量),分段,没有分段,71.7%和[0.646,0.786]。我们提出了一种新型DNN评估技术,使用层性相关性传播(LRP)和Brixia得分。 LRP Heatmaps表示放射科医生发现强烈的Covid-19症状和归属高Brixia评分的区域是堆叠DNN分类最重要的。外部验证表现出比内部更小的精度,表明概括在泛化中,分割改善了。外部数据集和LRP分析中的性能表明DNN可以在小型和混合数据集中培训并检测Covid-19。
translated by 谷歌翻译
电子健康记录数据模型的开发是一个积极研究的领域,其中包含少数公共基准数据集。研究人员通常编写自定义数据处理代码,但这会阻碍可重复性并引入错误。Python软件包TORCHTIME提供了常用Physionet和UEA和UCR时间序列分类存储库数据集的可重复实现。提供了用于处理不规则的不规则时间序列的不规则抽样的特征。它旨在简化对生理学数据的访问,并在这一令人兴奋的研究领域中对模型进行公平的比较。
translated by 谷歌翻译
预训练为深入学习支持的X线射线分析中最近的成功奠定了基础。它通过在源域上进行大规模完全监督或自我监督的学习来学习可转移的图像表示。然而,监督的预培训需要复杂和劳动密集的两级人类辅助注释过程,而自我监督的学习不能与监督范例竞争。为了解决这些问题,我们提出了一个跨监督的方法,命名为审查监督(指的)的自由文本报告,该报告从射线照相中获取来自原始放射学报告的自由监督信号。该方法采用了视觉变压器,旨在从每个患者研究中的多种视图中学习联合表示。在极其有限的监督下,引用其在4个众所周知的X射线数据集上的转移学习和自我监督学习对应。此外,甚至是基于具有人辅助结构标签的射线照相的源区的甚至超越方法。因此,有可能取代规范的预训练方法。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
The ability to quickly and accurately identify covariate shift at test time is a critical and often overlooked component of safe machine learning systems deployed in high-risk domains. While methods exist for detecting when predictions should not be made on out-of-distribution test examples, identifying distributional level differences between training and test time can help determine when a model should be removed from the deployment setting and retrained. In this work, we define harmful covariate shift (HCS) as a change in distribution that may weaken the generalization of a predictive model. To detect HCS, we use the discordance between an ensemble of classifiers trained to agree on training data and disagree on test data. We derive a loss function for training this ensemble and show that the disagreement rate and entropy represent powerful discriminative statistics for HCS. Empirically, we demonstrate the ability of our method to detect harmful covariate shift with statistical certainty on a variety of high-dimensional datasets. Across numerous domains and modalities, we show state-of-the-art performance compared to existing methods, particularly when the number of observed test samples is small.
translated by 谷歌翻译
多模型对现实世界应用的承诺激发了可视化和理解其内部力学的研究,其最终目标是使利益相关者能够可视化模型行为,执行模型调试并促进对机器学习模型的信任。但是,现代的多模型模型通常是黑盒神经网络,这使得了解其内部力学变得具有挑战性。我们如何能在这些模型中可视化多模式相互作用的内部建模?我们的论文旨在通过提出Multiviz来填补这一空白,这是一种通过将可解释性问题分为4个阶段来分析多模型模型行为的方法:(1)单峰的重要性:每种模式如何有助于下游建模和预测,(2)交叉交叉。 - 模式相互作用:不同模态如何相互关系,(3)多模式表示:如何在决策级特征中表示单峰和跨模式的交互作用,以及(4)多模式预测:决策级特征如何组成以制造一个预言。 Multiviz旨在在不同的模式,模型,任务和研究领域进行操作。通过对6个现实世界任务的8个训练模型的实验,我们表明,Multiviz中的互补阶段共同使用户能够(1)模拟模型预测,(2)将可解释的概念分配给功能,(3)对模型错误分析执行错误分析,(4)使用错误分析到调试模型的见解。 Multiviz公开可用,将定期使用新的解释工具和指标进行更新,并欢迎社区的意见。
translated by 谷歌翻译