This paper studies the algorithmic stability and generalizability of decentralized stochastic gradient descent (D-SGD). We prove that the consensus model learned by D-SGD is O(m/N +1/m+λ 2 )-stable in expectation in the non-convex non-smooth setting, where N is the total sample size of the whole system, m is the worker number, and 1−λ is the spectral gap that measures the connectivity of the communication topology. These results then deliver an2 ) in-average generalization bound, which is nonvacuous even when λ is closed to 1, in contrast to vacuous as suggested by existing literature on the projected version of D-SGD. Our theory indicates that the generalizability of D-SGD has a positive correlation with the spectral gap, and can explain why consensus control in initial training phase can ensure better generalization. Experiments of VGG-11 and ResNet-18 on CIFAR-10, CIFAR-100 and Tiny-ImageNet justify our theory. To our best knowledge, this is the first work on the topology-aware generalization of vanilla D-SGD. Code is available at https://github.com/Raiden-Zhu/ Generalization-of-DSGD.
translated by 谷歌翻译
分散和联合学习的关键挑战之一是设计算法,这些算法有效地处理跨代理商的高度异构数据分布。在本文中,我们在数据异质性下重新审视分散的随机梯度下降算法(D-SGD)的分析。我们在D-SGD的收敛速率上展示了新数量的关键作用,称为\ emph {邻居异质性}。通过结合通信拓扑结构和异质性,我们的分析阐明了这两个分散学习中这两个概念之间的相互作用较低。然后,我们认为邻里的异质性提供了一种自然标准,可以学习数据依赖性拓扑结构,以减少(甚至可以消除)数据异质性对D-SGD收敛时间的有害影响。对于与标签偏度分类的重要情况,我们制定了学习这样一个良好拓扑的问题,例如我们使用Frank-Wolfe算法解决的可拖动优化问题。如一组模拟和现实世界实验所示,我们的方法提供了一种设计稀疏拓扑的方法,可以在数据异质性下平衡D-SGD的收敛速度和D-SGD的触电沟通成本。
translated by 谷歌翻译
Most distributed machine learning systems nowadays, including TensorFlow and CNTK, are built in a centralized fashion. One bottleneck of centralized algorithms lies on high communication cost on the central node. Motivated by this, we ask, can decentralized algorithms be faster than its centralized counterpart?Although decentralized PSGD (D-PSGD) algorithms have been studied by the control community, existing analysis and theory do not show any advantage over centralized PSGD (C-PSGD) algorithms, simply assuming the application scenario where only the decentralized network is available. In this paper, we study a D-PSGD algorithm and provide the first theoretical analysis that indicates a regime in which decentralized algorithms might outperform centralized algorithms for distributed stochastic gradient descent. This is because D-PSGD has comparable total computational complexities to C-PSGD but requires much less communication cost on the busiest node. We further conduct an empirical study to validate our theoretical analysis across multiple frameworks (CNTK and Torch), different network configurations, and computation platforms up to 112 GPUs. On network configurations with low bandwidth or high latency, D-PSGD can be up to one order of magnitude faster than its well-optimized centralized counterparts.
translated by 谷歌翻译
在机器学习模型的数据并行优化中,工人协作以改善对模型的估计:更准确的梯度使他们可以使用更大的学习率并更快地优化。我们考虑所有工人从同一数据集进行采样的设置,并通过稀疏图(分散)进行通信。在这种情况下,当前的理论无法捕获现实世界行为的重要方面。首先,通信图的“光谱差距”不能预测其(深)学习中的经验表现。其次,当前的理论并不能解释合作可以比单独培训更大的学习率。实际上,它规定了较小的学习率,随着图表的变化而进一步降低,无法解释无限图中的收敛性。本文旨在在工人共享相同的数据分布时绘制出稀疏连接的分布式优化的准确图片。我们量化图形拓扑如何影响二次玩具问题中的收敛性,并为一般平滑和(强烈)凸目标提供理论结果。我们的理论与深度学习中的经验观察相匹配,并准确地描述了不同图形拓扑的相对优点。
translated by 谷歌翻译
为了提高分布式学习的训练速度,近年来见证了人们对开发同步和异步分布式随机方差减少优化方法的极大兴趣。但是,所有现有的同步和异步分布式训练算法都遭受了收敛速度或实施复杂性的各种局限性。这激发了我们提出一种称为\ algname(\ ul {s} emi-as \ ul {yn}的算法} ent \ ul {s} earch),它利用方差减少框架的特殊结构来克服同步和异步分布式学习算法的局限性,同时保留其显着特征。我们考虑分布式和共享内存体系结构下的\ algname的两个实现。我们表明我们的\ algname算法具有\(o(\ sqrt {n} \ epsilon^{ - 2}( - 2}(\ delta+1)+n)\)\)和\(o(\ sqrt {n} {n} 2}(\ delta+1)d+n)\)用于实现\(\ epsilon \)的计算复杂性 - 分布式和共享内存体系结构分别在非convex学习中的固定点,其中\(n \)表示培训样本的总数和\(\ delta \)表示工人的最大延迟。此外,我们通过建立二次强烈凸和非convex优化的算法稳定性界限来研究\ algname的概括性能。我们进一步进行广泛的数值实验来验证我们的理论发现
translated by 谷歌翻译
Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systemsoriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features: (1) periodic averaging where models are updated locally at devices and only periodically averaged at the server; (2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized messagepassing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.
translated by 谷歌翻译
由于其在数据隐私保护,有效的沟通和并行数据处理方面的好处,联邦学习(FL)近年来引起了人们的兴趣。同样,采用适当的算法设计,可以实现fl中收敛效应的理想线性加速。但是,FL上的大多数现有作品仅限于I.I.D.的系统。数据和集中参数服务器以及与异质数据集分散的FL上的结果仍然有限。此外,在完全分散的FL下,与数据异质性在完全分散的FL下,可以实现收敛的线性加速仍然是一个悬而未决的问题。在本文中,我们通过提出一种称为Net-Fleet的新算法,以解决具有数据异质性的完全分散的FL系统,以解决这些挑战。我们算法的关键思想是通过合并递归梯度校正技术来处理异质数据集,以增强FL(最初旨在用于通信效率)的本地更新方案。我们表明,在适当的参数设置下,所提出的净型算法实现了收敛的线性加速。我们进一步进行了广泛的数值实验,以评估所提出的净化算法的性能并验证我们的理论发现。
translated by 谷歌翻译
分布式学习已成为缩放机器学习并解决数据隐私需求不断增长的积分工具。虽然对网络拓扑的更强大,但分散的学习计划没有获得与其集中式同行相同的人气水平,因为它们具有较低的竞争性能。在这项工作中,我们将此问题归因于分散的学习工人之间缺乏同步,在经验和理论上表现出来,收敛速度与工人之间的同步水平相关联。我们认为,基于非线性漫步(非政府组织)的新型分散式学习框架,享有有吸引力的有限时间共识性,以实现更好的同步。我们对其收敛性提供了仔细分析,并讨论了现代分布式优化应用的优点,如深神经网络。我们对通信延迟和随机聊天如何影响学习的分析进一步实现了适应异步和随机通信的实际变体的推导。为了验证我们提案的有效性,我们通过广泛的测试,我们通过广泛的测试来利用竞争解决方案,令人鼓舞的结果报告。
translated by 谷歌翻译
亚当是训练深神经网络的最具影响力的自适应随机算法之一,即使在简单的凸面设置中,它也被指出是不同的。许多尝试,例如降低自适应学习率,采用较大的批量大小,结合了时间去相关技术,寻求类似的替代物,\ textit {etc。},以促进Adam-type算法融合。与现有方法相反,我们引入了另一种易于检查的替代条件,这仅取决于基础学习率的参数和历史二阶时刻的组合,以确保通用ADAM的全球融合以解决大型融合。缩放非凸随机优化。这种观察结果以及这种足够的条件,对亚当的差异产生了更深刻的解释。另一方面,在实践中,无需任何理论保证,广泛使用了迷你ADAM和分布式ADAM。我们进一步分析了分布式系统中的批次大小或节点的数量如何影响亚当的收敛性,从理论上讲,这表明迷你批次和分布式亚当可以通过使用较大的迷你批量或较大的大小来线性地加速节点的数量。最后,我们应用了通用的Adam和Mini Batch Adam,具有足够条件来求解反例并在各种真实世界数据集上训练多个神经网络。实验结果完全符合我们的理论分析。
translated by 谷歌翻译
具有周期性模型的本地随机梯度下降(SGD)平均(FEDAVG)是联合学习中的基础算法。该算法在多个工人上独立运行SGD,并定期平均所有工人的模型。然而,当本地SGD与许多工人一起运行时,周期性平均导致跨越工人的重大模型差异,使全局损失缓慢收敛。虽然最近的高级优化方法解决了专注于非IID设置的问题,但由于底层定期模型平均而仍存在模型差异问题。我们提出了一个部分模型平均框架,这些框架减轻了联合学习中的模型差异问题。部分平均鼓励本地模型在参数空间上保持彼此接近,并且它可以更有效地最小化全局损失。鉴于固定数量的迭代和大量工人(128),验证精度高达2.2%的验证精度高于周期性的完整平均值。
translated by 谷歌翻译
在本文中,我们考虑了在$ N $代理的分布式优化问题,每个都具有本地成本函数,协作最小化连接网络上的本地成本函数的平均值。为了解决问题,我们提出了一种分布式随机重新洗脱(D-RR)算法,该算法结合了经典分布式梯度下降(DGD)方法和随机重新洗脱(RR)。我们表明D-RR继承了RR的优越性,以使光滑强凸和平的非凸起目标功能。特别是,对于平稳强凸的目标函数,D-RR在平方距离方面实现$ \ Mathcal {o}(1 / T ^ 2)$汇率(这里,$ t $计算迭代总数)在迭代和独特的最小化之间。当假设客观函数是平滑的非凸块并且具有Lipschitz连续组件函数时,我们将D-RR以$ \ Mathcal {O}的速率驱动到0美元的平方标准(1 / T ^ {2 / 3})$。这些收敛结果与集中式RR(最多常数因素)匹配。
translated by 谷歌翻译
最近已经建立了近似稳定的学习算法的指数概括范围。但是,统一稳定性的概念是严格的,因为它是数据生成分布不变的。在稳定性的较弱和分布依赖性的概念下,例如假设稳定性和$ L_2 $稳定性,文献表明,在一般情况下,只有多项式概括界限是可能的。本文解决了这两个结果方案之间的长期紧张关系,并在融合信心的经典框架内取得了进步。为此,我们首先建立了一个预测的第一刻,通用错误限制了具有$ l_2 $稳定性的潜在随机学习算法,然后我们证明了一个正确设计的subbagagging流程会导致几乎紧密的指数概括性限制在上面数据和算法的随机性。我们将这些通用结果进一步实质性地将随机梯度下降(SGD)实现,以提高凸或非凸优化的高概率概括性范围,而自然时间衰减的学习速率则可以通过现有的假设稳定性或均匀的假设稳定性来证明这一点。基于稳定的结果。
translated by 谷歌翻译
使用多个计算节点通常可以加速在大型数据集上的深度神经网络。这种方法称为分布式训练,可以通过专门的消息传递协议,例如环形全部减少。但是,以比例运行这些协议需要可靠的高速网络,其仅在专用集群中可用。相比之下,许多现实世界应用程序,例如联合学习和基于云的分布式训练,在具有不稳定的网络带宽的不可靠的设备上运行。因此,这些应用程序仅限于使用参数服务器或基于Gossip的平均协议。在这项工作中,我们通过提出MOSHPIT全部减少的迭代平均协议来提升该限制,该协议指数地收敛于全局平均值。我们展示了我们对具有强烈理论保证的分布式优化方案的效率。该实验显示了与使用抢占从头开始训练的竞争性八卦的策略和1.5倍的加速,显示了1.3倍的Imagenet培训的加速。
translated by 谷歌翻译
我们提出了一种新的多功能增强学习的新型政策梯度方法,其利用了两个不同的差异减少技术,并且不需要在迭代上进行大量批次。具体而言,我们提出了一种基于势头的分散策略梯度跟踪(MDPGT),其中使用新的基于动量的方差减少技术来接近具有重要性采样的本地策略梯度代理,并采用中间参数来跟踪两个连续的策略梯度代理。此外,MDPGT可证明$ \ mathcal {o}的最佳可用样本复杂性(n ^ { - 1} \ epsilon ^ {-3})$,用于汇聚到全球平均值的$ \ epsilon $ -stationary点n $本地性能函数(可能是非旋转)。这优于在分散的无模型增强学习中的最先进的样本复杂性,并且当用单个轨迹初始化时,采样复杂性与现有的分散的政策梯度方法获得的样本复杂性匹配。我们进一步验证了高斯策略函数的理论索赔。当所需的误差容忍$ \ epsilon $足够小时,MDPGT导致线性加速,以前已经在分散的随机优化中建立,但不是为了加强学习。最后,我们在多智能体增强学习基准环境下提供了实证结果,以支持我们的理论发现。
translated by 谷歌翻译
遗憾已被广泛用作评估分布式多代理系统在线优化算法的性能的首选指标。但是,与代理相关的数据/模型变化可以显着影响决策,并需要在代理之间达成共识。此外,大多数现有的作品都集中在开发(强烈或非严格地)凸出的方法上,对于一般非凸损失的分布式在线优化中的遗憾界限,几乎没有得到很少的结果。为了解决这两个问题,我们提出了一种新型的综合遗憾,并使用新的基于网络的基于遗憾的度量标准来评估分布式在线优化算法。我们具体地定义了复合遗憾的静态和动态形式。通过利用我们的综合遗憾的动态形式,我们开发了一种基于共识的在线归一化梯度(CONGD)的伪convex损失方法,事实证明,它显示了与最佳器路径变化的规律性术语有关的透明性行为。对于一般的非凸损失,我们首先阐明了基于最近进步的分布式在线非凸学习的遗憾,因此没有确定性算法可以实现sublinear的遗憾。然后,我们根据离线优化的Oracle开发了分布式的在线非凸优化(Dinoco),而无需进入梯度。迪诺科(Dinoco)被证明是统一的遗憾。据我们所知,这是对一般分布在线非convex学习的第一个遗憾。
translated by 谷歌翻译
我们开发了一个通用框架,统一了几种基于梯度的随机优化方法,用于在集中式和分布式场景中,用于经验风险最小化问题。该框架取决于引入的增强图的引入,该图形由对样品进行建模和边缘建模设备设备间通信和设备内随机梯度计算。通过正确设计增强图的拓扑结构,我们能够作为特殊情况恢复为著名的本地-SGD和DSGD算法,并提供了统一的方差还原(VR)和梯度跟踪(GT)方法(例如Saga) ,本地-SVRG和GT-SAGA。我们还提供了统一的收敛分析,以依靠适当的结构化lyapunov函数,以实现平滑和(强烈的)凸目标,并且获得的速率可以恢复许多现有算法的最著名结果。速率结果进一步表明,VR和GT方法可以有效地消除设备内部和跨设备内的数据异质性,从而使算法与最佳解决方案的确切收敛性。数值实验证实了本文中的发现。
translated by 谷歌翻译
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions.Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
translated by 谷歌翻译
随机优化在最小化机器学习中的目标功能方面发现了广泛的应用,这激发了许多理论研究以了解其实际成功。大多数现有研究都集中在优化误差的收敛上,而随机优化的概括分析却落后了。在实践中经常遇到的非洞穴和非平滑问题的情况尤其如此。在本文中,我们初始化了对非凸和非平滑问题的随机优化的系统稳定性和概括分析。我们介绍了新型算法稳定性措施,并在人口梯度和经验梯度之间建立了定量联系,然后进一步扩展,以研究经验风险的莫罗(Moreau)膜之间的差距和人口风险的差距。据我们所知,尚未在文献中研究稳定性与概括之间的这些定量联系。我们引入了一类采样确定的算法,为此我们为三种稳定性度量而开发界限。最后,我们将这些讨论应用于随机梯度下降及其自适应变体的误差界限,我们在其中显示如何通过调整步骤大小和迭代次数来实现隐式正则化。
translated by 谷歌翻译
在不同数据分布下由不同优化算法训练的机器学习模型可以表现出明显的泛化行为。在本文中,我们分析了噪声迭代算法训练的模型的概括。通过将噪声迭代算法连接到通信和信息理论中发现的附加噪声信道来源,我们推导出依赖于分布的泛化界限。我们的泛化界限在几种应用中,包括差异私有随机梯度下降(DP-SGD),联合学习和随机梯度Langevin动力学(SGLD)。我们通过数值实验展示了我们的界限,表明他们可以帮助了解神经网络泛化现象的最新实证观察。
translated by 谷歌翻译
在本文中,我们建议在分散的设置中解决一个正规化的分布鲁棒性学习问题,并考虑到数据分配的变化。通过将Kullback-Liebler正则化功能添加到可靠的Min-Max优化问题中,可以将学习问题降低到修改的可靠最小化问题并有效地解决。利用新配制的优化问题,我们提出了一个强大的版本的分散的随机梯度下降(DSGD),分布在分布方面具有强大的分散性随机梯度下降(DR-DSGD)。在一些温和的假设下,前提是正则化参数大于一个,我们从理论上证明DR-DSGD达到了$ \ MATHCAL {O} \ left的收敛速率$,其中$ k $是设备的数量,而$ t $是迭代次数。仿真结果表明,我们提出的算法可以提高最差的分配测试精度,最高$ 10 \%$。此外,DR-DSGD比DSGD更有效,因为它需要更少的沟通回合(最高$ 20 $ $倍)才能达到相同的最差分配测试准确性目标。此外,进行的实验表明,在测试准确性方面,DR-DSGD会导致整个设备的性能更公平。
translated by 谷歌翻译