适当地表示数据库中的元素,以便可以准确匹配查询是信息检索的核心任务;最近,通过使用各种指标将数据库的图形结构嵌入层次结构的方式中来实现。持久性同源性是一种在拓扑数据分析中常用的工具,能够严格地以其层次结构和连接结构来表征数据库。计算各种嵌入式数据集上的持续同源性表明,一些常用的嵌入式无法保留连接性。我们表明,那些成功保留数据库拓扑的嵌入通过引入两种扩张不变的比较措施来捕获这种效果,尤其是解决了对流形的度量扭曲问题。我们为它们的计算提供了一种算法,该算法大大降低了现有方法的时间复杂性。我们使用这些措施来执行基于拓扑的信息检索的第一个实例,并证明了其在持久同源性的标准瓶颈距离上的性能提高。我们在不同数据品种的数据库中展示了我们的方法,包括文本,视频和医学图像。
translated by 谷歌翻译
本文旨在通过一种称为拓扑数据分析的方法来讨论一种量化数据“形状”的方法。拓扑数据分析中的主要工具是持续的同源性。这是从简单复合物的同源物中测量数据形状的一种手段,该方法在一系列值范围内计算出来。此处介绍了所需的背景理论和计算持续同源性的方法,并具有针对结构健康监测的应用。这些结果允许拓扑推断和推断高维数据中的功能的能力,否则可能会被忽略。为给定距离参数的数据构建了一个简单复合物。该复合物编码有关数据点局部接近性的信息。可以从这个简单复合物中计算出奇异的同源性值。扩展此想法,为一系列值提供了距离参数,并且在此范围内计算同源性。持续的同源性是在此间隔中如何持续存在数据的同源特征的一种表示。结果是数据的特征。还讨论了一种允许比较不同数据集的持续同源性的方法。
translated by 谷歌翻译
无监督的特征学习通常会发现捕获复杂数据结构的低维嵌入。对于专家的任务可获得专家,将其纳入学习的代表可能会导致更高质量的嵌入品。例如,这可以帮助人们将数据嵌入给定的簇数,或者容纳阻止一个人直接在模型上衍生数据分布的噪声,然后可以更有效地学习。然而,缺乏将不同的先前拓扑知识集成到嵌入中的一般工具。虽然最近已经开发了可微分的拓扑层,但可以(重新)形状嵌入预定的拓扑模型,他们对代表学习有两个重要的局限性,我们在本文中解决了这一点。首先,目前建议的拓扑损失未能以自然的方式代表诸如群集和耀斑的简单模型。其次,这些损失忽略了对学习有用的数据中的所有原始结构(例如邻域)信息。我们通过引入一组新的拓扑损失来克服这些限制,并提出其用法作为拓扑正规规范数据嵌入来自然代表预定模型的一种方法。我们包括彻底的综合和实际数据实验,突出了这种方法的有用性和多功能性,其中应用范围从建模高维单胞胎数据进行建模到绘图嵌入。
translated by 谷歌翻译
拓扑方法可以提供一种提出新的指标和审查数据的方法的方法,否则可能会忽略这一点。在这项工作中,将引入一种量化数据形状的方法,通过称为拓扑数据分析的主题。拓扑数据分析(TDA)中的主要工具是持续的同源性。持续的同源性是一种在长度范围内量化数据形状的方法。在这项工作中简要讨论了所需的背景和计算持续同源性的方法。然后,来自拓扑数据分析的思想被用于非线性动力学,以通过计算其嵌入维度,然后评估其一般拓扑来分析一些常见的吸引子。还将提出一种方法,该方法使用拓扑数据分析来确定时间延迟嵌入的最佳延迟。 TDA还将应用于结构健康监测中的Z24桥案例研究,在该Z24桥梁案例研究中,它将用于仔细检查不同的数据分区,并根据收集数据的条件进行分类。来自拓扑数据分析的度量标准用于比较分区之间的数据。提出的结果表明,损害的存在比温度所产生的影响更大。
translated by 谷歌翻译
持续的同源性(PH)是拓扑数据分析中最流行的方法之一。尽管PH已用于许多不同类型的应用程序中,但其成功背后的原因仍然难以捉摸。特别是,尚不知道哪种类别的问题最有效,或者在多大程度上可以检测几何或拓扑特征。这项工作的目的是确定pH在数据分析中比其他方法更好甚至更好的问题。我们考虑三个基本形状分析任务:从形状采样的2D和3D点云中检测孔数,曲率和凸度。实验表明,pH在这些任务中取得了成功,超过了几个基线,包括PointNet,这是一个精确地受到点云的属性启发的体系结构。此外,我们观察到,pH对于有限的计算资源和有限的培训数据以及分布外测试数据,包括各种数据转换和噪声,仍然有效。
translated by 谷歌翻译
我们考虑了$ d $维图像的新拓扑效率化,该图像通过在计算持久性之前与各种过滤器进行卷积。将卷积滤波器视为图像中的图案,结果卷积的持久图描述了图案在整个图像中分布的方式。我们称之为卷积持久性的管道扩展了拓扑结合图像数据中模式的能力。的确,我们证明(通常说)对于任何两个图像,人们都可以找到某些过滤器,它们会为其产生不同的持久图,以便给定图像的所有可能的卷积持久性图的收集是一个不变的不变性。通过表现出卷积的持久性是另一种拓扑不变的持续性副学变换的特殊情况,这证明了这一点。卷积持久性的其他优势是提高噪声的稳定性和鲁棒性,对数据依赖性矢量化的更大灵活性以及对具有较大步幅向量的卷积的计算复杂性降低。此外,我们还有一套实验表明,即使人们使用随机过滤器并通过仅记录其总持久性,卷积大大提高了持久性的预测能力,即使一个人使用随机过滤器并将结果图进行量化。
translated by 谷歌翻译
拓扑数据分析(TDA)的主要挑战之一是从机器学习算法直接可用的持久图中提取功能。实际上,持久性图是R2中的本质上(多级)点,并且不能以直接的方式视为向量。在本文中,我们介绍了持平性器,这是一个接受持久图作为输入的第一变压器神经网络架构。坚持不懈的体系结构显着优于古典合成基准数据集上以前的拓扑神经网络架构。此外,它满足了通用近似定理。这使我们能够介绍一种用于拓扑机学习的第一解释方法,我们在两个示例中探讨。
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
Image segmentation is a largely researched field where neural networks find vast applications in many facets of technology. Some of the most popular approaches to train segmentation networks employ loss functions optimizing pixel-overlap, an objective that is insufficient for many segmentation tasks. In recent years, their limitations fueled a growing interest in topology-aware methods, which aim to recover the correct topology of the segmented structures. However, so far, none of the existing approaches achieve a spatially correct matching between the topological features of ground truth and prediction. In this work, we propose the first topologically and feature-wise accurate metric and loss function for supervised image segmentation, which we term Betti matching. We show how induced matchings guarantee the spatially correct matching between barcodes in a segmentation setting. Furthermore, we propose an efficient algorithm to compute the Betti matching of images. We show that the Betti matching error is an interpretable metric to evaluate the topological correctness of segmentations, which is more sensitive than the well-established Betti number error. Moreover, the differentiability of the Betti matching loss enables its use as a loss function. It improves the topological performance of segmentation networks across six diverse datasets while preserving the volumetric performance. Our code is available in https://github.com/nstucki/Betti-matching.
translated by 谷歌翻译
数据表示的比较是一个复杂的多个方面问题,尚未享受完整的解决方案。我们提出了一种用于比较两个数据表示的方法。我们介绍了表示拓扑分歧(RTD),测量在两点云之间的多尺度拓扑中的异常相同,在点之间的一对一的对应关系。数据点云被允许位于不同的环境空间中。RTD是少数基于TDA的实用方法之一,适用于真实机器学习数据集。实验表明,提议的RTD同意对数据表示相似性的直观评估,对其拓扑结构敏感。我们申请RTD在各种问题的计算机视觉和NLP域中获得神经网络表示的见解:培训动力学分析,数据分配转移,转移学习,集合学习,解剖学评估。
translated by 谷歌翻译
从模型分析和机器学习中的比较到医疗数据集集合中的趋势发现,需要有效地比较和表示具有未知字段的数据集跨越各个字段。我们使用歧管学习来比较不同数据集的固有几何结构,通过比较其扩散操作员,对称阳性定义(SPD)矩阵,这些矩阵与连续的拉普拉斯 - 贝特拉米操作员与离散样品的近似相关。现有方法通常假设已知的数据对齐,并以点数的方式比较此类运算符。取而代之的是,我们利用SPD矩阵的Riemannian几何形状比较了这些操作员并根据log-euclidean Metric的下限定义了新的理论动机距离。我们的框架有助于比较具有不同大小,功能数量和测量方式的数据集中表达的数据歧管的比较。我们的日志 - 欧几里德签名(LES)距离恢复了有意义的结构差异,在各种应用领域的表现都优于竞争方法。
translated by 谷歌翻译
我们研究了紧凑型歧管M上的回归问题。为了利用数据的基本几何形状和拓扑结构,回归任务是基于歧管的前几个特征函数执行的,该特征是歧管的laplace-beltrami操作员,通过拓扑处罚进行正规化。提出的惩罚基于本征函数或估计功能的子级集的拓扑。显示总体方法可在合成和真实数据集上对各种应用产生有希望的和竞争性能。我们还根据回归函数估计,其预测误差及其平滑度(从拓扑意义上)提供理论保证。综上所述,这些结果支持我们方法在目标函数“拓扑平滑”的情况下的相关性。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
不服从统计学习理论的古典智慧,即使它们通常包含数百万参数,现代深度神经网络也概括了井。最近,已经表明迭代优化算法的轨迹可以具有分形结构,并且它们的泛化误差可以与这种分形的复杂性正式连接。这种复杂性由分形的内在尺寸测量,通常比网络中的参数数量小得多。尽管这种透视提供了对为什么跨分层化的网络不会过度装备的解释,但计算内在尺寸(例如,在训练期间进行监测泛化)是一种臭名昭着的困难任务,即使在中等环境维度中,现有方法也通常失败。在这项研究中,我们考虑了从拓扑数据分析(TDA)的镜头上的这个问题,并开发了一个基于严格的数学基础的通用计算工具。通过在学习理论和TDA之间进行新的联系,我们首先说明了泛化误差可以在称为“持久同源维度”(PHD)的概念中,与先前工作相比,我们的方法不需要关于培训动态的任何额外几何或统计假设。然后,通过利用最近建立的理论结果和TDA工具,我们开发了一种高效的算法来估计现代深度神经网络的规模中的博士,并进一步提供可视化工具,以帮助理解深度学习中的概括。我们的实验表明,所提出的方法可以有效地计算网络的内在尺寸,这些设置在各种设置中,这是预测泛化误差的。
translated by 谷歌翻译
Tools of Topological Data Analysis provide stable summaries encapsulating the shape of the considered data. Persistent homology, the most standard and well studied data summary, suffers a number of limitations; its computations are hard to distribute, it is hard to generalize to multifiltrations and is computationally prohibitive for big data-sets. In this paper we study the concept of Euler Characteristics Curves, for one parameter filtrations and Euler Characteristic Profiles, for multi-parameter filtrations. While being a weaker invariant in one dimension, we show that Euler Characteristic based approaches do not possess some handicaps of persistent homology; we show efficient algorithms to compute them in a distributed way, their generalization to multifiltrations and practical applicability for big data problems. In addition we show that the Euler Curves and Profiles enjoys certain type of stability which makes them robust tool in data analysis. Lastly, to show their practical applicability, multiple use-cases are considered.
translated by 谷歌翻译
In this paper, we present the findings of various methodologies for measuring the similarity of synthetic data generated from tabular data samples. We particularly apply our research to the case where the synthetic data has many more samples than the real data. This task has a special complexity: validating the reliability of this synthetically generated data with a much higher number of samples than the original. We evaluated the most commonly used global metrics found in the literature. We introduced a novel approach based on the data's topological signature analysis. Topological data analysis has several advantages in addressing this latter challenge. The study of qualitative geometric information focuses on geometric properties while neglecting quantitative distance function values. This is especially useful with high-dimensional synthetic data where the sample size has been significantly increased. It is comparable to introducing new data points into the data space within the limits set by the original data. Then, in large synthetic data spaces, points will be much more concentrated than in the original space, and their analysis will become much more sensitive to both the metrics used and noise. Instead, the concept of "closeness" between points is used for qualitative geometric information. Finally, we suggest an approach based on data Eigen vectors for evaluating the level of noise in synthetic data. This approach can also be used to assess the similarity of original and synthetic data.
translated by 谷歌翻译
在本文中,我们使用拓扑数据分析技术来构造合适的神经网络分类器,用于根据其参考指定系统来构建整个发电厂的传感器信号的任务。我们使用持久性图的表示来推导必要的预处理步骤并可视化大量数据。我们使用一维卷积层的深度架构,与堆叠的长短期存储器相结合,作为适合于处理持久性特征的剩余网络。我们组合了三个单独的子网,获得了输入时间序列本身和零级持续同源的表示。我们为大多数使用的超参数提供了数学推导。为了验证,使用来自相同结构类型的四个发电厂的传感器数据进行数值实验。
translated by 谷歌翻译
在发育过程中,细胞细胞共同居住与其新兴动态之间没有常规关联,这阻碍了我们对细胞种群如何扩散,分化和竞争的理解,即细胞生态学。随着单细胞RNA-Sequencing(RNA-Seq)的最新进展,我们可以通过构造表征细胞特异性转录程序基因表达谱的相似性的网络图来描述这种链接,并分析这些图系统地使用代数拓扑信息的摘要统计数据。我们提出了单细胞拓扑简单分析(SCTSA)。将这种方法应用于不同发展阶段的不同发育阶段的局部细胞网络的单细胞基因表达谱,这揭示了以前看不见的细胞生态拓扑结构。这些网络包含大量的单细胞剖面丛中的腔体,这些腔体指导了更复杂的居住形式的出现。与无效模型相比,我们使用这些网络的拓扑简单架构可视化这些生态模式。斑马鱼胚胎发生的单细胞RNA-seq数据跨越了38,731个细胞,25种细胞类型和12个时间步,我们的方法突出了胃肠道是最关键的阶段,与发育生物学的共识一致。作为非线性,独立和无监督的框架,我们的方法也可以应用于追踪多规模的细胞谱系,识别关键阶段或创建伪时间序列。
translated by 谷歌翻译
量子计算为某些问题提供了指数加速的潜力。但是,许多具有可证明加速的现有算法都需要当前不可用的耐故障量子计算机。我们提出了NISQ-TDA,这是第一个完全实现的量子机学习算法,其在任意经典(非手动)数据上具有可证明的指数加速,并且仅需要线性电路深度。我们报告了我们的NISQ-TDA算法的成功执行,该算法应用于在量子计算设备以及嘈杂的量子模拟器上运行的小数据集。我们从经验上证实,该算法对噪声是可靠的,并提供了目标深度和噪声水平,以实现现实世界中问题的近期,无耐受耐受性的量子优势。我们独特的数据加载投影方法是噪声鲁棒性的主要来源,引入了一种新的自我校正数据加载方法。
translated by 谷歌翻译
在本文中,我们定义了一种新的非Archimedian度量标准结构,称为CopHenetic度量标准,对所有度的持久同源性等级。然后,我们将Zeroth持续同源与许多不同度量的核心度量和分层聚类算法一起,根据我们在不同的数据集上获得的实验结果,提供统计上可靠的相应拓扑信息。我们还观察到来自坐骨距离的所产生的集群在内部和外部评估措施(如轮廓分数和Rand指数)方面都能发光。此外,由于为所有同源度定义了CopHenetic度量,因此现在可以通过植根树显示所有度的持续同源类别的关系。
translated by 谷歌翻译