我们介绍了泰德(Tidee),这是一种体现的代理,它根据学识渊博的常识对象和房间安排先验来整理一个无序场景。泰德(Tidee)探索家庭环境,检测到其自然位置的对象,渗透到它们的合理对象上下文,在当前场景中定位此类上下文,并重新定位对象。常识先验在三个模块中编码:i)检测到现象对象的视觉声音检测器,ii)对象和空间关系的关联神经图记忆,提出了对象重新定位的合理语义插座和表面,以及iii)引导代理商探索的可视搜索网络,以有效地将利益定位在当前场景中以重新定位对象。我们测试了在AI2THOR模拟环境中整理混乱的场景的潮汐。 Tidee直接从像素和原始深度输入中执行任务,而没有事先观察到同一房间,仅依靠从单独的一组培训房屋中学到的先验。人类对由此产生的房间进行重组的评估表明,泰德(Tidee)的表现优于该模型的消融版本,这些版本不使用一个或多个常识性先验。在相关的房间重新安排基准测试中,该基准使代理可以在重新排列前查看目标状态,我们的模型的简化版本大大胜过了最佳的方法,可以通过大幅度的差距。代码和数据可在项目网站上获得:https://tidee-agent.github.io/。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
Generalisation to unseen contexts remains a challenge for embodied navigation agents. In the context of semantic audio-visual navigation (SAVi) tasks, the notion of generalisation should include both generalising to unseen indoor visual scenes as well as generalising to unheard sounding objects. However, previous SAVi task definitions do not include evaluation conditions on truly novel sounding objects, resorting instead to evaluating agents on unheard sound clips of known objects; meanwhile, previous SAVi methods do not include explicit mechanisms for incorporating domain knowledge about object and region semantics. These weaknesses limit the development and assessment of models' abilities to generalise their learned experience. In this work, we introduce the use of knowledge-driven scene priors in the semantic audio-visual embodied navigation task: we combine semantic information from our novel knowledge graph that encodes object-region relations, spatial knowledge from dual Graph Encoder Networks, and background knowledge from a series of pre-training tasks -- all within a reinforcement learning framework for audio-visual navigation. We also define a new audio-visual navigation sub-task, where agents are evaluated on novel sounding objects, as opposed to unheard clips of known objects. We show improvements over strong baselines in generalisation to unseen regions and novel sounding objects, within the Habitat-Matterport3D simulation environment, under the SoundSpaces task.
translated by 谷歌翻译
从“Internet AI”的时代到“体现AI”的时代,AI算法和代理商出现了一个新兴范式转变,其中不再从主要来自Internet策划的图像,视频或文本的数据集。相反,他们通过与与人类类似的Enocentric感知来通过与其环境的互动学习。因此,对体现AI模拟器的需求存在大幅增长,以支持各种体现的AI研究任务。这种越来越多的体现AI兴趣是有利于对人工综合情报(AGI)的更大追求,但对这一领域并无一直存在当代和全面的调查。本文旨在向体现AI领域提供百科全书的调查,从其模拟器到其研究。通过使用我们提出的七种功能评估九个当前体现的AI模拟器,旨在了解模拟器,以其在体现AI研究和其局限性中使用。最后,本文调查了体现AI - 视觉探索,视觉导航和体现问题的三个主要研究任务(QA),涵盖了最先进的方法,评估指标和数据集。最后,随着通过测量该领域的新见解,本文将为仿真器 - 任务选择和建议提供关于该领域的未来方向的建议。
translated by 谷歌翻译
第一人称视频在其持续环境的背景下突出了摄影师的活动。但是,当前的视频理解方法是从短视频剪辑中的视觉特征的原因,这些视频片段与基础物理空间分离,只捕获直接看到的东西。我们提出了一种方法,该方法通过学习摄影师(潜在看不见的)本地环境来促进以人为中心的环境的了解来链接以自我为中心的视频和摄像机随着时间的推移而张开。我们使用来自模拟的3D环境中的代理商的视频进行训练,在该环境中,环境完全可以观察到,并在看不见的环境的房屋旅行的真实视频中对其进行测试。我们表明,通过将视频接地在其物理环境中,我们的模型超过了传统的场景分类模型,可以预测摄影师所处的哪个房间(其中帧级信息不足),并且可以利用这种基础来定位与环境相对应的视频瞬间 - 中心查询,优于先验方法。项目页面:http://vision.cs.utexas.edu/projects/ego-scene-context/
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译
对象视觉导航旨在基于代理的视觉观察来转向目标对象。非常希望合理地感知环境并准确控制代理。在导航任务中,我们引入了一个以代理为中心的关系图(ACRG),用于基于环境中的关系学习视觉表示。 ACRG是一种高效且合理的结构,包括两个关系,即物体之间的关系以及代理与目标之间的关系。一方面,我们设计了存储物体之间的相对水平位置的对象水平关系图(OHRG)。请注意,垂直关系不涉及OHRG,我们认为OHRG适合控制策略。另一方面,我们提出了代理 - 目标深度关系图(ATDRG),使代理能够将距离视为目标的距离。为了实现ATDRG,我们利用图像深度来表示距离。鉴于上述关系,代理可以察觉到环境和输出导航操作。鉴于ACRG和位置编码的全局功能构造的可视表示,代理可以捕获目标位置以执行导航操作。人工环境中的实验结果AI2-Thor表明ACRG显着优于看不见的检测环境中的其他最先进的方法。
translated by 谷歌翻译
Efficient ObjectGoal navigation (ObjectNav) in novel environments requires an understanding of the spatial and semantic regularities in environment layouts. In this work, we present a straightforward method for learning these regularities by predicting the locations of unobserved objects from incomplete semantic maps. Our method differs from previous prediction-based navigation methods, such as frontier potential prediction or egocentric map completion, by directly predicting unseen targets while leveraging the global context from all previously explored areas. Our prediction model is lightweight and can be trained in a supervised manner using a relatively small amount of passively collected data. Once trained, the model can be incorporated into a modular pipeline for ObjectNav without the need for any reinforcement learning. We validate the effectiveness of our method on the HM3D and MP3D ObjectNav datasets. We find that it achieves the state-of-the-art on both datasets, despite not using any additional data for training.
translated by 谷歌翻译
Training effective embodied AI agents often involves manual reward engineering, expert imitation, specialized components such as maps, or leveraging additional sensors for depth and localization. Another approach is to use neural architectures alongside self-supervised objectives which encourage better representation learning. In practice, there are few guarantees that these self-supervised objectives encode task-relevant information. We propose the Scene Graph Contrastive (SGC) loss, which uses scene graphs as general-purpose, training-only, supervisory signals. The SGC loss does away with explicit graph decoding and instead uses contrastive learning to align an agent's representation with a rich graphical encoding of its environment. The SGC loss is generally applicable, simple to implement, and encourages representations that encode objects' semantics, relationships, and history. Using the SGC loss, we attain significant gains on three embodied tasks: Object Navigation, Multi-Object Navigation, and Arm Point Navigation. Finally, we present studies and analyses which demonstrate the ability of our trained representation to encode semantic cues about the environment.
translated by 谷歌翻译
物理重新安排的物体是体现剂的重要功能。视觉室的重新安排评估了代理在房间中重新安排对象的能力,仅基于视觉输入而获得所需的目标。我们为此问题提出了一种简单而有效的方法:(1)搜索并映射需要重新排列哪些对象,以及(2)重新排列每个对象,直到任务完成为止。我们的方法包括一个现成的语义分割模型,基于体素的语义图和语义搜索策略,以有效地找到需要重新排列的对象。在AI2 - 重新排列的挑战中,我们的方法改进了当前最新的端到端增强学习方法,这些方法从0.53%的正确重排达到16.56%,学习视觉重排政策,仅使用2.7%,仅使用2.7%来自环境的样本。
translated by 谷歌翻译
我们研究了开发自主代理的问题,这些自主代理可以遵循人类的指示来推断和执行一系列行动以完成基础任务。近年来取得了重大进展,尤其是对于短范围的任务。但是,当涉及具有扩展动作序列的长匹马任务时,代理可以轻松忽略某些指令或陷入长长指令中间,并最终使任务失败。为了应对这一挑战,我们提出了一个基于模型的里程碑的任务跟踪器(M-Track),以指导代理商并监视其进度。具体而言,我们提出了一个里程碑构建器,该建筑商通过导航和交互里程碑标记指令,代理商需要逐步完成,以及一个系统地检查代理商当前里程碑的进度并确定何时继续进行下一个的里程碑检查器。在具有挑战性的Alfred数据集上,我们的M轨道在两个竞争基本模型中,未见成功率的相对成功率显着提高了33%和52%。
translated by 谷歌翻译
对象目标导航的最新方法依赖于增强学习,通常需要大量的计算资源和学习时间。我们提出了使用无互动学习(PONI)的对象导航的潜在功能,这是一种模块化方法,可以散布“在哪里看?”的技能?对于对象和“如何导航到(x,y)?”。我们的主要见解是“在哪里看?”可以纯粹将其视为感知问题,而没有环境相互作用就可以学习。为了解决这个问题,我们提出了一个网络,该网络可以预测两个在语义图上的互补电位功能,并使用它们来决定在哪里寻找看不见的对象。我们使用在自上而下的语义图的被动数据集上使用受监督的学习来训练潜在的功能网络,并将其集成到模块化框架中以执行对象目标导航。 Gibson和MatterPort3D的实验表明,我们的方法可实现对象目标导航的最新方法,同时减少培训计算成本高达1,600倍。可以使用代码和预训练的模型:https://vision.cs.utexas.edu/projects/poni/
translated by 谷歌翻译
机器人任务说明通常涉及机器人必须在环境中定位(地面)的引用对象。尽管任务意图理解是自然语言理解的重要组成部分,但努力却减少了解决任务时可能出现的歧义的努力。现有作品使用基于视觉的任务接地和歧义检测,适用于固定视图和静态机器人。但是,该问题对移动机器人进行了放大,其中未知的理想视图是未知的。此外,单个视图可能不足以定位给定区域中的所有对象实例,从而导致歧义检测不准确。只有机器人能够传达其面临的歧义,人类干预才能有所帮助。在本文中,我们介绍了doro(对对象的歧义),该系统可以帮助体现的代理在需要时提出合适的查询来消除引用对象的歧义。给定预期对象所处的区域,Doro通过在探索和扫描该区域的同时从多个视图中汇总观察结果来找到对象的所有实例。然后,它使用接地对象实例的信息提出合适的查询。使用AI2thor模拟器进行的实验表明,Doro不仅更准确地检测到歧义,而且还通过从视觉语言接地中获得了更准确的信息来提高冗长的查询。
translated by 谷歌翻译
提出了一个新颖的框架,以逐步收集基于标志的图形存储器,并使用收集的内存进行图像目标导航。给定目标图像搜索,具体的机器人利用语义内存在未知环境中找到目标。 %从RGB-D摄像机的全景观察中收集语义图存储器,而无需知道机器人的姿势。在本文中,我们提出了一个拓扑语义图存储(TSGM),该记忆由(1)一个图形构建器组成,该图将观察到的RGB-D图像构造拓扑语义图,(2)横图搅拌器模块,该模块采用该模块收集的节点以获取上下文信息,以及(3)将上下文内存作为输入的内存解码器,以找到对目标的操作。在图像目标导航的任务上,TSGM明显优于成功率的竞争基线,而SPL上的竞争性基线的表现为 +5.0-9.0%,这意味着TSGM可以找到有效的路径。此外,我们在现实世界图像目标方案中在移动机器人上演示了我们的方法。
translated by 谷歌翻译
对象看起来和声音的方式提供了对其物理特性的互补反射。在许多设置中,视觉和试听的线索都异步到达,但必须集成,就像我们听到一个物体掉落在地板上,然后必须找到它时。在本文中,我们介绍了一个设置,用于研究3D虚拟环境中的多模式对象定位。一个物体在房间的某个地方掉落。配备了摄像头和麦克风的具体机器人剂必须通过将音频和视觉信号与知识的基础物理学结合来确定已删除的对象以及位置。为了研究此问题,我们生成了一个大规模数据集 - 倒下的对象数据集 - 其中包括64个房间中30个物理对象类别的8000个实例。该数据集使用Threedworld平台,该平台可以模拟基于物理的影响声音和在影片设置中对象之间的复杂物理交互。作为解决这一挑战的第一步,我们基于模仿学习,强化学习和模块化计划,开发了一组具体的代理基线,并对这项新任务的挑战进行了深入的分析。
translated by 谷歌翻译
最近的作品表明,如何将大语言模型(LLM)的推理能力应用于自然语言处理以外的领域,例如机器人的计划和互动。这些具体的问题要求代理商了解世界上许多语义方面:可用技能的曲目,这些技能如何影响世界以及对世界的变化如何映射回该语言。在体现环境中规划的LLMS不仅需要考虑要做什么技能,还需要考虑如何以及何时进行操作 - 答案随着时间的推移而变化,以响应代理商自己的选择。在这项工作中,我们调查了在这种体现的环境中使用的LLM在多大程度上可以推论通过自然语言提供的反馈来源,而无需任何其他培训。我们建议,通过利用环境反馈,LLM能够形成内部独白,使他们能够在机器人控制方案中进行更丰富的处理和计划。我们研究了各种反馈来源,例如成功检测,场景描述和人类互动。我们发现,闭环语言反馈显着改善了三个领域的高级指导完成,包括模拟和真实的桌面顶部重新排列任务以及现实世界中厨房环境中的长途移动操作任务。
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译
For robots to be generally useful, they must be able to find arbitrary objects described by people (i.e., be language-driven) even without expensive navigation training on in-domain data (i.e., perform zero-shot inference). We explore these capabilities in a unified setting: language-driven zero-shot object navigation (L-ZSON). Inspired by the recent success of open-vocabulary models for image classification, we investigate a straightforward framework, CLIP on Wheels (CoW), to adapt open-vocabulary models to this task without fine-tuning. To better evaluate L-ZSON, we introduce the Pasture benchmark, which considers finding uncommon objects, objects described by spatial and appearance attributes, and hidden objects described relative to visible objects. We conduct an in-depth empirical study by directly deploying 21 CoW baselines across Habitat, RoboTHOR, and Pasture. In total, we evaluate over 90k navigation episodes and find that (1) CoW baselines often struggle to leverage language descriptions, but are proficient at finding uncommon objects. (2) A simple CoW, with CLIP-based object localization and classical exploration -- and no additional training -- matches the navigation efficiency of a state-of-the-art ZSON method trained for 500M steps on Habitat MP3D data. This same CoW provides a 15.6 percentage point improvement in success over a state-of-the-art RoboTHOR ZSON model.
translated by 谷歌翻译
现有语言接地模型通常使用对象提案瓶颈:预先训练的探测器提出了场景中的对象,模型学会从这些框提案中选择答案,而不会参加原始图像或3D点云。对象探测器通常在固定词汇上培训,其对象和属性通常过于限制开放域语言接地,其中话语可以指在各种抽象层面的视觉实体,例如椅子,椅子的椅子,或椅子前腿的尖端。我们为3D场景提出了一个用于接地语言的模型,绕过具有三个主要创新的盒子提案瓶颈:i)横跨语言流的迭代注意,点云特征流和3D框提案。 ii)具有非参数实体查询的变压器解码器,用于对对象和部分参考进行解码3D框。 iii)通过将物体检测视为由候选类别标签列表的参考词汇的接地为基础,从3D对象注释和语言接地注释的联合监督。这些创新在流行的3D语言接地基准上之前的方法上产生了显着的定量收益(对SR3D基准测试的绝对改善)。我们消除了我们的每一个创新,向模型表现出贡献。当在具有次要变化的2D图像上应用于语言接地时,它会与最先进的,同时收敛于GPU时间的一半。代码和检查点将在https://github.com/nickgkan/beaut_detr中提供
translated by 谷歌翻译
Semantic navigation is necessary to deploy mobile robots in uncontrolled environments like our homes, schools, and hospitals. Many learning-based approaches have been proposed in response to the lack of semantic understanding of the classical pipeline for spatial navigation, which builds a geometric map using depth sensors and plans to reach point goals. Broadly, end-to-end learning approaches reactively map sensor inputs to actions with deep neural networks, while modular learning approaches enrich the classical pipeline with learning-based semantic sensing and exploration. But learned visual navigation policies have predominantly been evaluated in simulation. How well do different classes of methods work on a robot? We present a large-scale empirical study of semantic visual navigation methods comparing representative methods from classical, modular, and end-to-end learning approaches across six homes with no prior experience, maps, or instrumentation. We find that modular learning works well in the real world, attaining a 90% success rate. In contrast, end-to-end learning does not, dropping from 77% simulation to 23% real-world success rate due to a large image domain gap between simulation and reality. For practitioners, we show that modular learning is a reliable approach to navigate to objects: modularity and abstraction in policy design enable Sim-to-Real transfer. For researchers, we identify two key issues that prevent today's simulators from being reliable evaluation benchmarks - (A) a large Sim-to-Real gap in images and (B) a disconnect between simulation and real-world error modes - and propose concrete steps forward.
translated by 谷歌翻译