汤普森采样(TS)是在不确定性下进行决策的有效方法,其中从精心规定的分布中采样了动作,该分布根据观察到的数据进行更新。在这项工作中,我们研究了使用TS的可稳定线性季度调节剂(LQR)自适应控制的问题,其中系统动力学是未知的。先前的作品已经确定,$ \ tilde o(\ sqrt {t})$频繁的遗憾对于LQR的自适应控制是最佳的。但是,现有方法要么仅在限制性设置中起作用,需要先验已知的稳定控制器,要么使用计算上棘手的方法。我们提出了一种有效的TS算法,用于对LQR的自适应控制,TS基于TS的自适应控制,TSAC,该算法达到了$ \ tilde o(\ sqrt {t})$遗憾,即使对于多维系统和Lazaric(2018)。 TSAC不需要先验已知的稳定控制器,并通过在早期阶段有效探索环境来实现基础系统的快速稳定。我们的结果取决于开发新颖的下限TS提供乐观样本的概率。通过仔细规定早期的探索策略和政策更新规则,我们表明TS在适应性控制多维可稳定性LQR方面实现了最佳的遗憾。我们从经验上证明了TSAC在几个自适应控制任务中的性能和效率。
translated by 谷歌翻译
学习如何有效地控制未知的动态系统对于智能自治系统至关重要。当潜在的动态随着时间的推移时,这项任务成为一个重大挑战。本文认为这一挑战,本文考虑了控制未知马尔可夫跳跃线性系统(MJS)的问题,以优化二次目标。通过采用基于模型的透视图,我们考虑对MJSS的识别自适应控制。我们首先为MJS提供系统识别算法,用于从系统状态,输入和模式的单个轨迹,从模式开关的演进中的底层中学习MJS的系统识别算法。通过混合时间参数,该算法的样本复杂性显示为$ \ mathcal {o}(1 / \ sqrt {t})$。然后,我们提出了一种自适应控制方案,其与确定性等效控制一起执行系统识别,以使控制器以焦化方式调整。 Combining our sample complexity results with recent perturbation results for certainty equivalent control, we prove that when the episode lengths are appropriately chosen, the proposed adaptive control scheme achieves $\mathcal{O}(\sqrt{T})$ regret, which can be改进了$ \ mathcal {o}(polylog(t))$与系统的部分了解。我们的证据策略介绍了在MJSS中处理马尔可维亚跳跃的创新和较弱的稳定概念。我们的分析提供了影响学习准确性和控制性能的系统理论量的见解。提出了数值模拟,以进一步加强这些见解。
translated by 谷歌翻译
这项教程调查概述了统计学习理论中最新的非征血性进步与控制和系统识别相关。尽管在所有控制领域都取得了重大进展,但在线性系统的识别和学习线性二次调节器时,该理论是最发达的,这是本手稿的重点。从理论的角度来看,这些进步的大部分劳动都在适应现代高维统计和学习理论的工具。虽然与控制对机器学习的工具感兴趣的理论家高度相关,但基础材料并不总是容易访问。为了解决这个问题,我们提供了相关材料的独立介绍,概述了基于最新结果的所有关键思想和技术机械。我们还提出了许多开放问题和未来的方向。
translated by 谷歌翻译
我们考虑在随机凸成本和状态和成本函数的全部反馈下控制未知线性动力学系统的问题。我们提出了一种计算高效的算法,该算法与最佳的稳定线性控制器相比,该算法达到了最佳的$ \ sqrt {t} $遗憾。与以前的工作相反,我们的算法基于面对不确定性范式的乐观情绪。这导致了大大改善的计算复杂性和更简单的分析。
translated by 谷歌翻译
本文介绍了局部最低限度的遗憾,用于自适应控制线性 - 四爵士(LQG)系统的下限。我们考虑平滑参数化实例,并在对数遗憾时提供了对实例的特定和灵活性,以考虑到问题结构。这种理解依赖于两个关键概念:局部无规格的概念;当最佳策略没有提供足够的激励以确定最佳政策,并产生退化的Fisher信息矩阵;以及信息遗憾的界限,当政策依赖信息矩阵的小特征值在该政策的遗憾方面是无限的。结合减少贝叶斯估计和范树的应用,这两个条件足以证明遗憾的界限为时间$ \ sqrt {t} $ \ sqrt {t} $ of the the theaign,$ t $。该方法产生低界,其具有与控制理论问题常数自然的紧密依赖性和规模。例如,我们能够证明在边缘稳定性附近运行的系统从根本上难以学习控制。我们进一步表明,大类系统满足这些条件,其中任何具有$ a $的状态反馈系统 - 和$ b $ -matrices未知。最重要的是,我们还建立了一个非活动类别的部分可观察系统,基本上是那些过度启动的那些满足这些条件,从而提供$ \ SQRT {T} $下限对部分可观察系统也有效。最后,我们转到两个简单的例子,表明我们的下限捕获了经典控制 - 理论直觉:我们的下限用于在边际稳定性附近或大过滤器增益的近方行,这些系统可以任意难以努力(学习到)控制。
translated by 谷歌翻译
根据线性随机微分方程进化的扩散过程是连续时间动态决策模型的重要家族。最佳政策对它们进行了充分研究,并确定了漂移矩阵。然而,对于不确定的漂移矩阵的扩散过程的数据驱动的控制知之甚少,因为常规离散时间分析技术不适用。此外,尽管该任务可以被视为涉及探索和剥削权衡取舍的强化学习问题,但确保系统稳定性是设计最佳政策的基本组成部分。我们确定流行的汤普森采样算法可以快速学习最佳动作,仅产生了时间根的遗憾,并在短时间内稳定了系统。据我们所知,这是汤普森在扩散过程控制问题中抽样的第一个结果。我们通过从两个飞机和血糖控制的两个设置的实际参数矩阵的经验模拟来验证理论结果。此外,我们观察到,与最先进的算法相比,汤普森采样显着改善(最坏的)遗憾,这表明汤普森采样以一种更加保护的方式探索。我们的理论分析涉及特定的特定最优歧管,该歧管将漂移参数的局部几何形状与扩散过程的最佳控制。我们希望这项技术具有更广泛的兴趣。
translated by 谷歌翻译
我们考虑通过有限的地平线$ t $控制线性二次调节器(LQR)系统的问题,以固定和已知的成本矩阵$ q,r $但未知和非静止动力$ \ {a_t,b_t \} $。动态矩阵的序列可以是任意的,但总体变化,V_T $,假设为$ O(t)$和控制器未知。在假设所有$ $ $的稳定序列,但潜在的子最优控制器中,我们介绍了一种实现$ \ tilde {\ mathcal {o}} \ left的最佳动态遗憾的算法(v_t ^ { 2/5} t ^ {3/5} \右)$。通过分词恒定动态,我们的算法实现了$ \ tilde {\ mathcal {o}}(\ sqrt {st})$的最佳遗憾,其中$ s $是交换机的数量。我们的算法的关键是一种自适应的非平稳性检测策略,它在最近开发的用于上下文多武装匪徒问题的方法中构建。我们还争辩说,不适应忘记(例如,重新启动或使用静态窗口大小的滑动窗口学习)可能对LQR问题的后悔最佳,即使窗口大小以$ V_T $的知识最佳地调整。我们算法分析中的主要技术挑战是证明普通的最小二乘(OLS)估计器在待估计的参数是非静止的情况下具有小的偏差。我们的分析还突出了推动遗憾的关键主题是LQR问题在于LQR问题是具有线性反馈和局部二次成本的强盗问题。这个主题比LQR问题本身更普及,因此我们相信我们的结果应该找到更广泛的应用。
translated by 谷歌翻译
本文考虑了线性二次双控制问题,其中需要识别系统参数,并且需要在该时期优化控制目标。与现有的数据驱动线性二次调节相反,这通常在某种概率内提供错误或后悔界限,我们提出了一种在线算法,可以在几乎肯定的意义上保证控制器的渐近最优性。我们的双重控制策略由两部分组成:基于勘探噪声和系统输出之间的互相关,具有时间衰减探索噪声和Markov参数推断的交换控制器。当实际状态显着地从目标状态偏离时,几乎肯定的性能保证是一个安全的交换控制策略,其返回到已知的保守但稳定的控制器。我们证明,此切换策略规定了从应用中的任何潜在的稳定控制器,而我们的交换策略与最佳线性状态反馈之间的性能差距是指数较小的。在我们的双控制方案下,参数推理误差尺度为$ O(t ^ {-1 / 4 + \ epsilon})$,而控制性能的子优相差距为$ o(t ^ { - 1/2 + \ epsilon})$,$ t $是时间步数,$ \ epsilon $是一个任意小的正数。提供了工业过程示例的仿真结果,以说明我们提出的策略的有效性。
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
我们考虑通过流算法从单个轨迹估计线性时间不变(LTI)动态系统的问题,这在包括增强学习(RL)和时间序列分析的若干应用中遇到。虽然LTI系统估计问题在{\ em离线}设置中进行了很好地研究,但实际上重要的流媒体/在线设置很少受到关注。如随机梯度下降(SGD)等标准流动方法不太可能起作用,因为流点可以高度相关。在这项工作中,我们提出了一种新颖的流媒体算法,SGD具有反向体验的重播($ \ MATHSF {SGD} - \ MATHSF {RER),这是由RL文献中流行的体验重播(ER)技术的启发。 $ \ mathsf {sgd} - \ mathsf {rer} $划分为小缓冲区,并在存储在单个缓冲区中的数据后向后运行SGD。我们表明该算法精确地解构了依赖结构,并获得了从理论上最佳保证的信息,用于参数误差和预测误差。因此,我们提供了我们的第一至最佳的知识 - 最佳的SGD风格算法,用于使用一阶Oracle的线性系统识别的经典问题。此外,$ \ mathsf {sgd} - \ mathsf {rer} $可以应用于具有已知稀疏模式和非线性动态系统的稀疏LTI识别的更多常规设置。我们的工作表明,数据依赖性结构的知识可以帮助我们在统计上和计算上的算法设计中,这些算法可以“去相关”流样本。
translated by 谷歌翻译
我们解决了通过在线后退地平线控制(RHC)的框架来控制控制未知线性动态系统的问题,以时代变化的成本函数。我们考虑控制算法不知道真正的系统模型的设置,并且只能访问固定长度(不与控制范围内的增长)预览未来成本函数。我们使用动态遗憾度量的算法表征了算法的性能,该算法被定义为算法产生的累积成本与后视行动中最佳动作顺序之间的差异。我们提出了两个不同的在线RHC算法来解决这个问题,即确定的等价RHC(CE-RHC)算法和乐观RHC(O-RHC)算法。我们表明,在模型估计的标准稳定假设下,CE-RHC算法实现$ \ Mathcal {O}(T ^ {2/3})$动态遗憾。然后,我们将此结果扩展到通过提出O-RHC算法仅适用于真实系统模型的稳定假设。我们表明O-RHC算法实现$ \ Mathcal {O}(T ^ {2/3})$动态遗憾,但有一些额外的计算。
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
尽管在理解增强学习的最小样本复杂性(RL)(在“最坏情况”的实例上学习的复杂性)方面已经取得了很多进展,但这种复杂性的衡量标准通常不会捕捉到真正的学习困难。在实践中,在“简单”的情况下,我们可能希望获得比最糟糕的实例可以实现的要好得多。在这项工作中,我们试图理解在具有线性函数近似的RL设置中学习近乎最佳策略(PAC RL)的“实例依赖性”复杂性。我们提出了一种算法,\ textsc {pedel},该算法实现了依赖于实例的复杂性的量度,这是RL中的第一个具有功能近似设置,从而捕获了每个特定问题实例的学习难度。通过一个明确的示例,我们表明\ textsc {pedel}可以在低重晶,最小值 - 最佳算法上获得可证明的收益,并且这种算法无法达到实例 - 最佳速率。我们的方法取决于基于设计的新型实验程序,该程序将勘探预算重点放在与学习近乎最佳政策最相关的“方向”上,并且可能具有独立的兴趣。
translated by 谷歌翻译
当动作集具有良好的曲率时,我们在任何线性匪徒算法产生的设计矩阵的特征矩阵上介绍了一个非呈现的下限。具体而言,我们表明,每当算法的预期累积后悔为$ o(\ sqrt {n})$时,预期设计矩阵的最低特征值将随着$ \ omega(\ sqrt {n})$的增长而生长为$ n $是学习范围,动作空间在最佳臂周围具有恒定的Hessian。这表明,这种作用空间在离散(即分离良好的)动作空间中迫使多项式下限而不是对数下限,如\ cite {lattimore2017end}所示。此外,虽然先前的结果仅在渐近方案(如$ n \ to \ infty $)中保留,但我们对这些``本地富裕的''动作空间的结果随时都在。此外,在温和的技术假设下,我们以高概率获得了对最小本本特征值的相似下限。我们将结果应用于两个实用的方案 - \ emph {model selection}和\ emph {clustering}在线性匪徒中。对于模型选择,我们表明了一个基于时期的线性匪徒算法适应了真实模型的复杂性,以时代数量的速率指数,借助我们的新频谱结合。对于聚类,我们考虑了一个多代理框架,我们通过利用光谱结果,该框架来证明该框架,该框架,该框架,该框架通过光谱结果,该频谱结果,该框架的结果,该频谱结果,该框架的结果,该频谱结果该框架,该框架的结果不需要强制探索 - 代理商可以运行线性匪徒算法并立即估算其基本参数,从而产生低遗憾。
translated by 谷歌翻译
本文研究了在因果图形模型中设计最佳干预措施序列的问题,以最大程度地减少对事后最佳干预的累积后悔。自然,这是一个因果匪徒问题。重点是线性结构方程模型(SEM)和软干预措施的因果匪徒。假定该图的结构是已知的,并且具有$ n $节点。每个节点都假定使用两种线性机制,一种软干预和一种观察性,产生了$ 2^n $可能的干预措施。现有的因果匪徒算法假设,至少完全指定了奖励节点父母的介入分布。但是,有$ 2^n $这样的分布(一个与每个干预措施相对应),即使在中等尺寸的图中也变得越来越高。本文分配了知道这些分布的假设。提出了两种算法,用于常见者(基于UCB)和贝叶斯(基于汤普森采样)的设置。这些算法的关键思想是避免直接估计$ 2^n $奖励分布,而是估算完全指定SEMS($ n $线性)的参数,并使用它们来计算奖励。在这两种算法中,在噪声和参数空间的有界假设下,累积遗憾的是$ \ tilde {\ cal o}(((2d)^l l \ sqrt {t})$,其中$ d $是图的最高度和$ l $是其最长因果路径的长度。
translated by 谷歌翻译
我们开发了一个概率框架,用于分析基于模型的加强学习在整个概念环境中。然后,我们将其应用于使用线性动力学但未知的系数和凸起的有限时间地平线随机控制问题,但可能是不规则的,客观的函数。使用概率表示,我们研究相关成本函数的规律性,并建立精确估计,用于应用估计和真实模型参数的最佳反馈控制之间的性能差距。我们确定这种性能差距是二次,提高近期工作的线性性能差距的条件[X.郭,A. Hu和Y. Zhang,Arxiv预印,arxiv:2104.09311,(2021)],它与随机线性二次问题获得的结果相匹配。接下来,我们提出了一种基于阶段的学习算法,我们展示了如何优化探索剥削权衡,并在高概率和期望中实现索布林遗憾。当对二次性能间隙保持所需的假设时,该算法在一般情况下实现了订单$ \ mathcal {o}(\ sqrt {n \ ln n)$高概率后悔,以及订单$ \ mathcal {o} ((\ ln n)^ 2)$预期遗憾,在自我探索案例中,超过$ n $剧集,匹配文献中的最佳结果。分析需要新的浓度不等式,用于相关的连续时间观察,我们得出。
translated by 谷歌翻译
We study representation learning for efficient imitation learning over linear systems. In particular, we consider a setting where learning is split into two phases: (a) a pre-training step where a shared $k$-dimensional representation is learned from $H$ source policies, and (b) a target policy fine-tuning step where the learned representation is used to parameterize the policy class. We find that the imitation gap over trajectories generated by the learned target policy is bounded by $\tilde{O}\left( \frac{k n_x}{HN_{\mathrm{shared}}} + \frac{k n_u}{N_{\mathrm{target}}}\right)$, where $n_x > k$ is the state dimension, $n_u$ is the input dimension, $N_{\mathrm{shared}}$ denotes the total amount of data collected for each policy during representation learning, and $N_{\mathrm{target}}$ is the amount of target task data. This result formalizes the intuition that aggregating data across related tasks to learn a representation can significantly improve the sample efficiency of learning a target task. The trends suggested by this bound are corroborated in simulation.
translated by 谷歌翻译
我们研究了一种强化学习理论(RL),其中学习者在情节结束时仅收到一次二进制反馈。尽管这是理论上的极端测试案例,但它也可以说是实际应用程序的代表性,而不是在RL实践中,学习者在每个时间步骤中都会收到反馈。的确,在许多实际应用的应用程序中,例如自动驾驶汽车和机器人技术,更容易评估学习者的完整轨迹要么是“好”还是“坏”,但是更难在每个方面提供奖励信号步。为了证明在这种更具挑战性的环境中学习是可能的,我们研究了轨迹标签由未知参数模型生成的情况,并提供了一种统计和计算上有效的算法,从而实现了sublinear遗憾。
translated by 谷歌翻译
学习线性时间不变动态系统(LTID)的参数是当前兴趣的问题。在许多应用程序中,人们有兴趣联合学习多个相关LTID的参数,这仍然是未探究的日期。为此,我们开发一个联合估计器,用于学习共享常见基矩阵的LTID的过渡矩阵。此外,我们建立有限时间误差界限,取决于底层的样本大小,维度,任务数和转换矩阵的光谱属性。结果是在轻度规律假设下获得的,并在单独学习每个系统的比较中,展示从LTID的汇集信息汇总信息。我们还研究了错过过渡矩阵的联合结构的影响,并显示成立的结果在适度误操作的存在下是强大的。
translated by 谷歌翻译
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret assuming completeness and bounded Eluder dimension for the regression function class. As a special case, VO$Q$L achieves $\tilde{O}(d\sqrt{HT}+d^6H^{5})$ regret over $T$ episodes for a horizon $H$ MDP under ($d$-dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incorporates weighted regression-based upper and lower bounds on the optimal value function to obtain this improved regret. The algorithm is computationally efficient given a regression oracle over the function class, making this the first computationally tractable and statistically optimal approach for linear MDPs.
translated by 谷歌翻译