由于监督模型无法学习可以在具有有限标签的域中概括的域名,因此自我监督学习(SSL)已成为计算机视觉中的理想范式。 SSL的最新流行导致了几种模型的开发,这些模型利用了不同的培训策略,架构和数据扩展政策,而没有现有的统一框架来研究或评估其在转移学习中的有效性。我们提出了一个数据驱动的几何策略,可以使用每个局部诱导的特征空间中的局部邻域分析不同的SSL模型。与考虑参数,单个组件或优化领域的数学近似的现有方法不同,我们的工作旨在探索SSL模型所学的表示歧管的几何特性。我们提出的歧管图指标(MGM)提供了有关可用SSL模型之间的几何相似性和差异的见解,它们在特定的增强方面的不变以及它们在转移学习任务方面的表现。我们的关键发现是两个方面:(i)与普遍的看法相反,SSL模型的几何形状与其训练范式(对比度,无对比性和基于群集)无关; (ii)我们可以根据其语义和增强歧管的几何特性来预测特定模型的传输学习能力。
translated by 谷歌翻译
Self-supervised visual representation learning has seen huge progress recently, but no large scale evaluation has compared the many models now available. We evaluate the transfer performance of 13 top self-supervised models on 40 downstream tasks, including many-shot and few-shot recognition, object detection, and dense prediction. We compare their performance to a supervised baseline and show that on most tasks the best self-supervised models outperform supervision, confirming the recently observed trend in the literature. We find ImageNet Top-1 accuracy to be highly correlated with transfer to many-shot recognition, but increasingly less so for few-shot, object detection and dense prediction. No single self-supervised method dominates overall, suggesting that universal pre-training is still unsolved. Our analysis of features suggests that top self-supervised learners fail to preserve colour information as well as supervised alternatives, but tend to induce better classifier calibration, and less attentive overfitting than supervised learners.
translated by 谷歌翻译
Self-supervised learning (SSL) aims to produce useful feature representations without access to any human-labeled data annotations. Due to the success of recent SSL methods based on contrastive learning, such as SimCLR, this problem has gained popularity. Most current contrastive learning approaches append a parametrized projection head to the end of some backbone network to optimize the InfoNCE objective and then discard the learned projection head after training. This raises a fundamental question: Why is a learnable projection head required if we are to discard it after training? In this work, we first perform a systematic study on the behavior of SSL training focusing on the role of the projection head layers. By formulating the projection head as a parametric component for the InfoNCE objective rather than a part of the network, we present an alternative optimization scheme for training contrastive learning based SSL frameworks. Our experimental study on multiple image classification datasets demonstrates the effectiveness of the proposed approach over alternatives in the SSL literature.
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
为了在看不见的看不见和潜在的超出分布样品上,希望机器学习模型具有关于影响输入变化因子的变换的可预测响应。在这里,我们研究了几种类型的归纳偏见对这种可预测行为的相对重要性:数据的选择,他们的增强和模型架构。通过手工工程数据增强通常实现不变性,但是进行标准数据增强地址转换,用于解释实际数据的变化?虽然事先工作专注于合成数据,但我们在此尝试表征真实数据集,想象成的变化因素,并研究标准残余网络的不变性以及最近提出的视觉变压器关于这些因素的变化。我们展示了标准的增强依赖于平移和规模的精确组合,在翻译回顾大部分性能改进 - 尽管在卷积架构(如剩余网络)中建立的(近似)翻译不变性。事实上,我们发现规模和翻译不变性在剩余网络和视觉变压器模型中类似于它们显着不同的架构感应偏差。我们显示培训数据本身是不变性的主要来源,数据增强只会进一步增加所学到的InorRARCE。值得注意的是,在训练期间学习的修正因与我们发现的想象成分对齐。最后,我们发现想象成的变化的主要因素主要与外观有关,并且特定于每个班级。
translated by 谷歌翻译
我们考虑在给定的分类任务(例如Imagenet-1k(IN1K))上训练深神网络的问题,以便它在该任务以及其他(未来)转移任务方面擅长。这两个看似矛盾的属性在改善模型的概括的同时保持其在原始任务上的性能之间实现了权衡。接受自我监督学习训练的模型(SSL)倾向于比其受监督的转移学习更好地概括。但是,他们仍然落后于In1k上的监督模型。在本文中,我们提出了一个有监督的学习设置,以利用两全其美的方式。我们使用最近的SSL模型的两个关键组成部分丰富了普通的监督培训框架:多尺度农作物用于数据增强和使用可消耗的投影仪。我们用内存库在即时计算的类原型中代替了班级权重的最后一层。我们表明,这三个改进导致IN1K培训任务和13个转移任务之间的权衡取决于更加有利的权衡。在所有探索的配置中,我们都会挑出两种模型:T-Rex实现了转移学习的新状态,并且超过了In1k上的Dino和Paws等最佳方法,以及与高度优化的RSB--相匹配的T-Rex*在IN1K上的A1模型,同时在转移任务上表现更好。项目页面和预估计的模型:https://europe.naverlabs.com/t-rex
translated by 谷歌翻译
近年来,随着深度神经网络方法的普及,手术计算机视觉领域经历了相当大的突破。但是,用于培训的标准全面监督方法需要大量的带注释的数据,从而实现高昂的成本;特别是在临床领域。已经开始在一般计算机视觉社区中获得吸引力的自我监督学习(SSL)方法代表了对这些注释成本的潜在解决方案,从而使仅从未标记的数据中学习有用的表示形式。尽管如此,SSL方法在更复杂和有影响力的领域(例如医学和手术)中的有效性仍然有限且未开发。在这项工作中,我们通过在手术计算机视觉的背景下研究了四种最先进的SSL方法(Moco V2,Simclr,Dino,SWAV),以解决这一关键需求。我们对这些方法在cholec80数据集上的性能进行了广泛的分析,以在手术环境理解,相位识别和工具存在检测中为两个基本和流行的任务。我们检查了它们的参数化,然后在半监督设置中相对于训练数据数量的行为。如本工作所述和进行的那样,将这些方法的正确转移到手术中,可以使SSL的一般用途获得可观的性能 - 相位识别率高达7%,而在工具存在检测方面,则具有20% - 半监督相位识别方法高达14%。该代码将在https://github.com/camma-public/selfsupsurg上提供。
translated by 谷歌翻译
自我监督的学习是一个强大的范例,用于在未标记的图像上学习。基于实例匹配的大量有效的新方法依赖于数据增强来推动学习,这些方法达成了优化流行识别基准的增强方案的粗略协议。但是,有强有力的理由可疑计算机视觉中的不同任务需要对不同(IN)差异进行编码的功能,因此可能需要不同的增强策略。在本文中,我们衡量了对比方法学到的修正学知识,并确认他们确实学会了与使用的增强的不变性,进一步表明,这一不变性大大转移到与姿势和照明的相关真实变化的变化很大程度上转移。我们展示了学习的InorRARCES强烈影响下游任务性能,并确认不同的下游任务从极性相反(IN)差异中受益,导致使用标准增强策略时的性能损失。最后,我们证明,具有互补的修正条件的表现简单融合可确保对所考虑的所有不同下游任务进行广泛的可转换性。
translated by 谷歌翻译
近年来出现的一种意外技术包括使用自我监督学习(SSL)方法培训深网(DN),并在下游任务上使用此网络,但其最后几层已完全删除。这种通常的脱脂技巧实际上对于SSL方法显示竞争性表演至关重要。例如,在成像网分类上,可以以这种方式获得超过30个百分比。这有点令人烦恼,因为人们希望在训练期间SSL标准明确执行不变性的网络层(最后一层)应该是用于下游最佳概括性能的一种。但这似乎并非如此,这项研究阐明了原因。我们将这种技巧称为断头台正则化(GR),实际上是一种普遍适用的正则化形式,也已用于改善转移学习方案中的泛化性能。在这项工作中,通过理论和实验,我们将GR形式化并确定其在SSL方法中成功背后的根本原因。我们的研究表明,这种技巧对于SSL的性能至关重要,原因有两个:(i)确定训练过程中使用的正面对的数据启发不当,和/或(ii)次优选择了该训练的超参数。 SSL损失。
translated by 谷歌翻译
Data-driven neighborhood definitions and graph constructions are often used in machine learning and signal processing applications. k-nearest neighbor~(kNN) and $\epsilon$-neighborhood methods are among the most common methods used for neighborhood selection, due to their computational simplicity. However, the choice of parameters associated with these methods, such as k and $\epsilon$, is still ad hoc. We make two main contributions in this paper. First, we present an alternative view of neighborhood selection, where we show that neighborhood construction is equivalent to a sparse signal approximation problem. Second, we propose an algorithm, non-negative kernel regression~(NNK), for obtaining neighborhoods that lead to better sparse representation. NNK draws similarities to the orthogonal matching pursuit approach to signal representation and possesses desirable geometric and theoretical properties. Experiments demonstrate (i) the robustness of the NNK algorithm for neighborhood and graph construction, (ii) its ability to adapt the number of neighbors to the data properties, and (iii) its superior performance in local neighborhood and graph-based machine learning tasks.
translated by 谷歌翻译
对比自我监督的学习已经超越了许多下游任务的监督预测,如分割和物体检测。但是,当前的方法仍然主要应用于像想象成的策划数据集。在本文中,我们首先研究数据集中的偏差如何影响现有方法。我们的研究结果表明,目前的对比方法令人惊讶地工作:(i)对象与场景为中心,(ii)统一与长尾和(iii)一般与域特定的数据集。其次,鉴于这种方法的一般性,我们尝试通过微小的修改来实现进一步的收益。我们展示了学习额外的修正 - 通过使用多尺度裁剪,更强的增强和最近的邻居 - 改善了表示。最后,我们观察Moco在用多作物策略训练时学习空间结构化表示。表示可以用于语义段检索和视频实例分段,而不会FineTuning。此外,结果与专门模型相提并论。我们希望这项工作将成为其他研究人员的有用研究。代码和模型可在https://github.com/wvanganebleke/revisiting-contrastive-ssl上获得。
translated by 谷歌翻译
我们专注于更好地理解增强不变代表性学习的关键因素。我们重新访问moco v2和byol,并试图证明以下假设的真实性:不同的框架即使具有相同的借口任务也会带来不同特征的表示。我们建立了MoCo V2和BYOL之间公平比较的第一个基准,并观察:(i)复杂的模型配置使得可以更好地适应预训练数据集; (ii)从实现竞争性转移表演中获得的预训练和微调阻碍模型的优化策略不匹配。鉴于公平的基准,我们进行进一步的研究并发现网络结构的不对称性赋予对比框架在线性评估协议下正常工作,同时可能会损害长尾分类任务的转移性能。此外,负样本并不能使模型更明智地选择数据增强,也不会使不对称网络结构结构。我们相信我们的发现为将来的工作提供了有用的信息。
translated by 谷歌翻译
最近无监督的表示学习方法已经通过学习表示不变的数据增强,例如随机裁剪和彩色抖动等数据增强来生效。然而,如果依赖于数据增强的特征,例如,位置或色敏,则这种不变性可能对下游任务有害。这不是一个不监督学习的问题;我们发现即使在监督学习中也会发生这种情况,因为它还学会预测实例所有增强样本的相同标签。为避免此类失败并获得更广泛的表示,我们建议优化辅助自我监督损失,创建的AGESELF,了解两个随机增强样本之间的增强参数(例如,裁剪位置,颜色调整强度)的差异。我们的直觉是,Augelf鼓励在学习的陈述中保留增强信息,这可能有利于其可转让性。此外,Augself可以很容易地纳入最近的最先进的表示学习方法,其额外的培训成本可忽略不计。广泛的实验表明,我们的简单想法一直在各种转移学习情景中始终如一地提高了由监督和无监督方法所学到的表示的可转移性。代码可在https://github.com/hankook/augsfir。
translated by 谷歌翻译
降低降低方法是无监督的方法,它学习了低维空间,在这些方法中,初始空间的某些特性(通常是“邻居”的概念)被保留。这种方法通常需要在大的K-NN图或复杂的优化求解器上传播。另一方面,通常用于从头开始学习表示形式,依靠简单,更可扩展的框架来学习的自我监督学习方法。在本文中,我们提出了TLDR,这是通用输入空间的一种降低方法,该方法正在移植Zbontar等人的最新自我监督学习框架。 (2021)降低维度的特定任务,超越任意表示。我们建议使用最近的邻居从训练组中构建对,并减少冗余损失,以学习在此类对之间产生表示形式的编码器。 TLDR是一种简单,易于训练和广泛适用性的方法。它由一个离线最近的邻居计算步骤组成,该步骤可以高度近似,并且是一个直接的学习过程。为了提高可伸缩性,我们专注于提高线性维度的降低,并在图像和文档检索任务上显示一致的收益,例如在Roxford上获得PCA的 +4%地图,用于GEM-AP,改善了ImageNet上的Dino的性能或以10倍的压缩保留。
translated by 谷歌翻译
对自我监督学习(SSL)的最新分析发现,以下以数据为中心的属性对于学习良好表示至关重要:对任务 - 无关紧要的语义的不变性,在某些潜在空间中的类别可分离性以及从增强样品中可恢复标签的类别。但是,鉴于它们的离散,非欧成功的性质,图形数据集和图SSL方法不太可能满足这些属性。这提出了一个问题:如何绘制SSL方法(例如对比度学习(CL))如何工作?为了系统地探究这个问题,我们在使用通用图扩展(GGAS)时对CL进行概括分析,重点是以数据为中心的属性。我们的分析对GGA的局限性以及与任务相关的增强的必要性产生了正式见解。正如我们经验表明的那样,GGA不会在共同基准数据集上引起与任务相关的不变性,这只会导致对天真的,未经训练的基线的边际收益。我们的理论激发了合成数据生成过程,该过程能够控制与任务相关的信息并拥有预定义的最佳增强。这种灵活的基准测试有助于我们确定高级增强技术(例如自动化方法)中未认可的限制。总体而言,我们的工作在经验和理论上都严格地对以数据为中心的属性对图形SSL的增强策略和学习范式的影响进行了严格的背景。
translated by 谷歌翻译
我们从统计依赖性角度接近自我监督的图像表示学习,提出与希尔伯特 - 施密特独立性标准(SSL-HSIC)自我监督的学习。 SSL-HSIC最大化图像和图像标识的变换表示之间的依赖性,同时最小化这些表示的核化方差。该框架产生了对Infonce的新了解,在不同转换之间的相互信息(MI)上的变分下限。虽然已知MI本身具有可能导致学习无意义的表示的病理学,但其绑定表现得更好:我们表明它隐含地近似于SSL-HSIC(具有略微不同的规范器)。我们的方法还向我们深入了解Byol,一种无与伦比的SSL方法,因为SSL-HSIC类似地了解了当地的样本邻居。 SSL-HSIC允许我们在批量大小中直接在时间线性上直接优化统计依赖性,而无需限制数据假设或间接相互信息估计。 SSL-HSIC培训或没有目标网络,SSL-HSIC与Imagenet的标准线性评估相匹配,半监督学习和转移到其他分类和视觉任务,如语义分割,深度估计和对象识别等。代码可在https://github.com/deepmind/ssl_hsic提供。
translated by 谷歌翻译
由于其最近在减少监督学习的差距方面取得了成功,自我监督的学习方法正在增加计算机愿景的牵引力。在自然语言处理(NLP)中,自我监督的学习和变形金刚已经是选择的方法。最近的文献表明,变压器也在计算机愿景中越来越受欢迎。到目前为止,当使用大规模监督数据或某种共同监督时,视觉变压器已被证明可以很好地工作。在教师网络方面。这些监督的普试视觉变压器在下游任务中实现了非常好的变化,变化最小。在这项工作中,我们调查自我监督学习的预用图像/视觉变压器,然后使用它们进行下游分类任务的优点。我们提出了自我监督的视觉变压器(坐在)并讨论了几种自我监督的培训机制,以获得借口模型。静坐的架构灵活性允许我们将其用作自动统计器,并无缝地使用多个自我监控任务。我们表明,可以在小规模数据集上进行预训练,以便在小型数据集上进行下游分类任务,包括几千个图像而不是数百万的图像。使用公共协议对所提出的方法进行评估标准数据集。结果展示了变压器的强度及其对自我监督学习的适用性。我们通过大边缘表现出现有的自我监督学习方法。我们还观察到坐着很好,很少有镜头学习,并且还表明它通过简单地训练从坐的学到的学习功能的线性分类器来学习有用的表示。预先训练,FineTuning和评估代码将在以下:https://github.com/sara-ahmed/sit。
translated by 谷歌翻译
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub. 3 * Equal contribution; the order of first authors was randomly selected.
translated by 谷歌翻译
自我监督的学习允许AI系统使用不需要昂贵的标签的任务从大量数据中学习有效表示。模式崩溃,即为所有输入产生相同表示形式的模型,是许多自我监督学习方法的核心问题,可以使自我监督任务(例如匹配输入的变形变体)无效。在本文中,我们认为,同一输入的替代潜在表示之间信息最大化的直接应用自然解决了崩溃问题并实现了竞争性的经验结果。我们提出了一种自我监督的学习方法Corinfomax,该方法使用了基于二阶统计的共同信息度量,以反映其参数之间的相关性水平。在同一输入的替代表示之间最大化此相关信息度量有两个目的:(1)它通过生成具有非脱位协方差的特征向量来避免崩溃问题; (2)通过增加它们之间的线性依赖性,它在替代表示之间建立了相关性。提出的信息最大化客观的近似简化为基于欧几里得距离的目标函数,该目标函数由特征协方差矩阵的对数确定因素正规化。正则术语是针对特征空间退化的自然障碍。因此,除了避免完全输出崩溃到一个点外,提出的方法还通过鼓励信息在整个特征空间中的传播来防止尺寸崩溃。数值实验表明,相对于最先进的SSL方法,Corinfomax取得更好或竞争性的性能结果。
translated by 谷歌翻译