在文化遗产部门中,在将机器学习技术应用于数字收藏时,已经做出了越来越多的努力来考虑关键的社会技术视角。尽管文化遗产社区共同开发了一大批工作,详细介绍了在组织层面的图书馆和其他文化遗产机构中的机器学习负责任的运营,但仍有很少专门针对从业人员踏上机器学习项目的实践者。将机器学习应用于文化遗产所涉及的歧管赌注和敏感性强调了制定此类准则的重要性。本文通过在开发利用文化遗产数据的机器学习项目时使用指导性问题和实践来制定详细的清单,从而为这一需求做出了贡献。我将结果清单称为“收集为ML数据”清单,完成后,该清单可以通过项目的可交付成果发布。通过调查现有项目,包括我自己的项目,报纸导航员,我证明了“作为ML数据的收集”清单是合理的,并证明了如何采用和操作该制定的指导问题。
translated by 谷歌翻译
在进行研究,设计和系统开发时,HCI研究人员一直在将注意力从个人用户转移到社区。但是,我们的领域尚未建立对社区合并研究方法的挑战,利益和承诺的凝聚力,系统的理解。我们对47个计算研究论文进行了系统的综述和主题分析,讨论了与社区的参与性研究,以开发过去二十年来,以开发技术文物和系统。从这篇评论中,我们确定了与项目演变相关的七个主题:从建立社区伙伴关系到维持结果。我们的发现表明,这些项目的特征是几个紧张关系,其中许多与研究人员的力量和位置以及计算研究环境有关,相对于社区伙伴。我们讨论了我们的发现的含义,并提供方法论建议,以指导HCI,并更广泛地计算研究中心社区的实践。
translated by 谷歌翻译
值得信赖的人工智能(AI)已成为一个重要的话题,因为在AI系统及其创造者中的信任已经丢失。研究人员,公司和政府具有远离技术开发,部署和监督的边缘化群体的长期和痛苦的历史。结果,这些技术对小群体的有用甚至有害。我们争辩说,渴望信任的任何AI开发,部署和监测框架必须纳入女权主义,非剥削参与性设计原则和强大,外部和持续监测和测试。我们还向考虑到透明度,公平性和问责制的可靠性方面的重要性,特别是考虑对任何值得信赖的AI系统的核心价值观的正义和转移权力。创建值得信赖的AI通过资金,支持和赋予Grassroots组织,如AI Queer等基层组织开始,因此AI领域具有多样性和纳入可信和有效地发展的可信赖AI。我们利用AI的专家知识Queer通过其多年的工作和宣传来讨论以及如何以及如何在数据集和AI系统中使用如何以及如何在数据集和AI系统中使用以及沿着这些线路的危害。基于此,我们分享了对AI的性别方法,进一步提出了Queer认识论并分析它可以带来AI的好处。我们还讨论了如何在愿景中讨论如何使用此Queer认识论,提出与AI和性别多样性和隐私和酷儿数据保护相关的框架。
translated by 谷歌翻译
在每日新兴科学调查和发现的世界中,跨行业的机器学习的多产推出对于熟悉ML潜力的人来说令人惊讶。这种伦理集中研究的一致性既不是对源于同一申请的偏见和不公平问题的回应而产生的。对抗算法偏差的技术的公平研究现在比以往任何时候都更加支持。大部分公平研究已经开始生产工具,即机器学习从业者可以在设计其算法时审核偏差。尽管如此,在实践中缺乏应用这些公平解决方案。该系统审查提供了已经定义的算法偏置问题的深入摘要,并提出了公平解决空间。此外,本综述提供了对溶液空间的深入崩溃,自释放以来出现的溶液空间以及机器学习从业者,公平研究人员和机构利益攸关方提出的需求的分类。这些需求已经组织并向各方组织并解决了其实施,包括公平研究人员,产生ML算法的组织以及机器学习从业者自己。这些发现可以在未来使用,以弥合从业者和公平专家之间的差距,并告知创建可用的展示展示率工具包。
translated by 谷歌翻译
自动决策算法正在越来越多地做出或协助影响人类生活的决策。这些算法中有许多处理个人数据,以预测累犯,信用风险分析,使用面部识别识别个人等等。尽管有可能提高效率和有效性,但这种算法并非固有地摆脱偏见,不透明,缺乏解释性,恶意性等。鉴于这些算法的结果对个人和社会产生了重大影响,并且在部署后开放分析和竞争,因此必须在部署前考虑此类问题。正式审核是确保算法符合适当的问责制标准的一种方式。这项工作基于对文献和专家焦点小组研究的广泛分析,为系统问责制定基于人工智能决策系统的正式审核的系统问责制定了一个统一的框架。这项工作还建议系统卡作为记分卡,展示此类审核的结果。它由56个标准组成,该标准由四乘四分之四的矩阵组织,该矩阵由重点介绍(i)数据,(ii)模型,(iii)代码,(iv)系统的行组成,以及重点介绍(a)的列,(b )评估,(c)缓解和(d)保证。拟议的系统问责制基准反映了负责系统的最新开发,可作为算法审核的清单,并为未来研究的顺序工作铺平了道路。
translated by 谷歌翻译
教育技术,以及他们部署的学校教育系统,制定了特定的意识形态,了解有关知识的重要事项以及学习者应该如何学习。作为人工智能技术 - 在教育和超越 - 可能导致边缘社区的不公平结果,已经制定了各种方法来评估和减轻AI的有害影响。然而,我们争辩于本文认为,在AI模型中的性能差异的基础上评估公平的主导范式是面对教育AI系统(RE)生产的系统性不公平。我们在批判理论和黑色女权主义奖学金中汲取了结构性不公正的镜头,以批判性地审查了几个普遍研究的和广泛采用的教育AI类别,并探讨了他们如何融入和重现结构不公正和不公平的历史遗产和不公平的历史遗产。他们模型绩效的奇偶阶段。我们关闭了替代愿景,为教育ai提供更公平的未来。
translated by 谷歌翻译
负责任的AI被广泛认为是我们时代最大的科学挑战之一,也是释放AI市场并增加采用率的关键。为了应对负责任的AI挑战,最近已经发布了许多AI伦理原则框架,AI系统应该符合这些框架。但是,没有进一步的最佳实践指导,从业者除了真实性之外没有什么。同样,在算法级别而不是系统级的算法上进行了重大努力,主要集中于数学无关的道德原则(例如隐私和公平)的一部分。然而,道德问题在开发生命周期的任何步骤中都可能发生,从而超过AI算法和模型以外的系统的许多AI,非AI和数据组件。为了从系统的角度操作负责任的AI,在本文中,我们采用了一种面向模式的方法,并根据系统的多媒体文献综述(MLR)的结果提出了负责任的AI模式目录。与其呆在道德原则层面或算法层面上,我们专注于AI系统利益相关者可以在实践中采取的模式,以确保开发的AI系统在整个治理和工程生命周期中负责。负责的AI模式编目将模式分为三组:多层次治理模式,可信赖的过程模式和负责任的逐设计产品模式。这些模式为利益相关者实施负责任的AI提供了系统性和可行的指导。
translated by 谷歌翻译
数据对于机器学习(ML)模型的开发和评估至关重要。但是,在部署所得模型时,使用有问题或不适当的数据集可能会造成危害。为了通过对数据集进行更故意的反思和创建过程的透明度来鼓励负责任的练习,研究人员和从业人员已开始倡导增加数据文档,并提出了几个数据文档框架。但是,几乎没有研究这些数据文档框架是否满足创建和消费数据集的ML从业者的需求。为了解决这一差距,我们着手了解ML从业人员的数据文档感知,需求,挑战和Desiderata,目的是推导设计要求,以便为将来的数据文档框架提供信息。我们对一家大型国际技术公司的14名ML从业者进行了一系列半结构化访谈。我们让他们回答从数据集的数据表中提取的问题列表(Gebru,2021)。我们的发现表明,目前的数据文档方法在很大程度上是临时的,而且本质上是近视的。参与者表达了对数据文档框架的需求,可以适应其上下文,并将其集成到现有的工具和工作流程中,并尽可能自动化。尽管事实上,数据文档框架通常是从负责人的AI的角度出发的,但参与者并未在他们被要求回答的问题与负责的AI含义之间建立联系。此外,参与者通常会在数据集消费者的需求中优先考虑,并提供了不熟悉其数据集可能需要知道的信息。基于这些发现,我们为将来的数据文档框架得出了七个设计要求。
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
为了调节机器学习驱动的系统(ML)系统,当前的审核过程主要集中于检测有害算法偏见。尽管这些策略已被证明具有影响力,但在审计过程中涉及ML驱动系统中伦理的文档中概述的一些价值仍然不足。这种未解决的值主要处理无法轻易量化的上下文因素。在本文中,我们开发了一个基于价值的评估框架,该框架不限于偏见审计,并涵盖了算法系统的重要道德原则。我们的框架提出了值的圆形布置,并具有两个双极尺寸,这些二极管尺寸使共同的动机和潜在的紧张局势明确。为了实现这些高级原则,然后将价值分解为特定的标准及其表现形式。但是,其中一些特定于价值的标准是相互排斥的,需要协商。与仅依靠ML研究人员和从业者的意见的其他一些其他审计框架相反,我们认为有必要包括利益相关者,这些利益相关者表现出各种观点,以系统地谈判和巩固价值和标准紧张局势。为此,我们将利益相关者绘制有不同的见解需求,并为将价值表现传达给他们的量身定制手段。因此,我们通过评估框架为当前的ML审计实践做出了贡献,该实践可视化价值之间的亲密关系和紧张局势,并给出了如何对其进行操作的准则,同时向广泛的利益相关者开放评估和审议过程。
translated by 谷歌翻译
人工智能(AI)治理调节行使权威和控制AI的管理。它旨在通过有效利用数据并最大程度地减少与AI相关的成本和风险来利用AI。尽管AI治理和AI伦理等主题在理论,哲学,社会和监管层面上进行了详尽的讨论,但针对公司和公司的AI治理工作有限。这项工作将AI产品视为系统,在该系统中,通过机器学习(ML)模型(培训)数据传递关键功能。我们通过在AI和相关领域(例如ML)合成文献来得出一个概念框架。我们的框架将AI治理分解为数据的治理,(ML)模型和(AI)系统沿着四个维度。它与现有的IT和数据治理框架和实践有关。它可以由从业者和学者都采用。对于从业者来说,主要是研究论文的综合,但从业者的出版物和监管机构的出版物也为实施AI治理提供了宝贵的起点,而对于学者来说,该论文强调了许多AI治理领域,值得更多关注。
translated by 谷歌翻译
在线众包平台使对算法输出进行评估变得容易,并提出诸如“哪个图像更好,A或B?”之类的问题的调查,在视觉和图形研究论文中的这些“用户研究”的扩散导致了增加匆忙进行的研究充其量是草率且无知的,并且可能有害和误导。我们认为,在计算机视觉和图形论文中的用户研究的设计和报告需要更多关注。为了提高从业者的知识并提高用户研究的可信度和可复制性,我们提供了用户体验研究(UXR),人类计算机互动(HCI)和相关领域的方法论的概述。我们讨论了目前在计算机视觉和图形研究中未利用的基础用户研究方法(例如,需要调查),但可以为研究项目提供宝贵的指导。我们为有兴趣探索其他UXR方法的读者提供了进一步的指导。最后,我们描述了研究界的更广泛的开放问题和建议。我们鼓励作者和审稿人都认识到,并非每项研究贡献都需要用户研究,而且根本没有研究比不小心进行的研究更好。
translated by 谷歌翻译
Several policy options exist, or have been proposed, to further responsible artificial intelligence (AI) development and deployment. Institutions, including U.S. government agencies, states, professional societies, and private and public sector businesses, are well positioned to implement these policies. However, given limited resources, not all policies can or should be equally prioritized. We define and review nine suggested policies for furthering responsible AI, rank each policy on potential use and impact, and recommend prioritization relative to each institution type. We find that pre-deployment audits and assessments and post-deployment accountability are likely to have the highest impact but also the highest barriers to adoption. We recommend that U.S. government agencies and companies highly prioritize development of pre-deployment audits and assessments, while the U.S. national legislature should highly prioritize post-deployment accountability. We suggest that U.S. government agencies and professional societies should highly prioritize policies that support responsible AI research and that states should highly prioritize support of responsible AI education. We propose that companies can highly prioritize involving community stakeholders in development efforts and supporting diversity in AI development. We advise lower levels of prioritization across institutions for AI ethics statements and databases of AI technologies or incidents. We recognize that no one policy will lead to responsible AI and instead advocate for strategic policy implementation across institutions.
translated by 谷歌翻译
这项工作旨在将有效性考虑到有关是否以及如何在高风险域中构建数据驱动算法的审议。为此,我们将关键概念从有效性理论转化为预测算法。我们描述了问题制定和数据问题中的共同挑战,这些问题危害了预测算法的有效性。我们将这些问题提炼成一系列高级问题,旨在促进和记录有关预测任务和数据适用性的合法性的思考。这项贡献为共同设计有效性协议的基础与现实世界中的利益相关者合作,包括决策者,建模者和潜在影响社区的成员,以严格评估数据驱动的算法的特定设计的合理性和使用系统。
translated by 谷歌翻译
机器学习(ML)技术在教育方面越来越普遍,从预测学生辍学,到协助大学入学以及促进MOOC的兴起。考虑到这些新颖用途的快速增长,迫切需要调查ML技术如何支持长期以来的教育原则和目标。在这项工作中,我们阐明了这一复杂的景观绘制,以对教育专家的访谈进行定性见解。这些访谈包括对过去十年中著名应用ML会议上发表的ML教育(ML4ED)论文的深入评估。我们的中心研究目标是批判性地研究这些论文的陈述或暗示教育和社会目标如何与他们解决的ML问题保持一致。也就是说,技术问题的提出,目标,方法和解释结果与手头的教育问题保持一致。我们发现,在ML生命周期的两个部分中存在跨学科的差距,并且尤其突出:从教育目标和将预测转换为干预措施的ML问题的提出。我们使用这些见解来提出扩展的ML生命周期,这也可能适用于在其他领域中使用ML。我们的工作加入了越来越多的跨教育和ML研究的荟萃分析研究,以及对ML社会影响的批判性分析。具体而言,它填补了对机器学习的主要技术理解与与学生合作和政策合作的教育研究人员的观点之间的差距。
translated by 谷歌翻译
残疾人在医疗保健,就业和政府政策等各个领域的各种复杂的决策过程中受到各种复杂的决策。这些环境通常已经不透明他们影响的人并缺乏充分的残疾观点代表,它迅速采用人工智能(AI)技术来用于数据分析以告知决策,从而增加因不当或不公平的算法而造成的伤害风险增加。本文介绍了一个通过残疾镜头进行严格检查AI数据分析技术的框架,并研究了AI技术设计师选择的残疾定义如何影响其对残疾分析对象的影响。我们考虑了三种残疾的概念模型:医学模型,社会模型和关系模型;并展示在每个模型下设计的AI技术如何差异很大,以至于与彼此不相容和矛盾。通过讨论有关医疗保健和政府残疾福利中AI分析的常见用例,我们说明了技术设计过程中的特定考虑因素和决策点,这些因素和决策点影响了这些环境中的电力动态和包容性,并有助于确定其对边缘化或支持的方向。我们提出的框架可以作为对AI技术的深入批判性检查的基础,并开发用于残疾相关的AI分析的设计实践。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
在理想的世界中,部署的机器学习模式将增强我们的社会。我们希望这些模型能够提供对每个人受益的无偏见和道德决策。然而,这并非总是如此;问题从数据策核流程到模型的部署时出现。继续使用偏见的数据集和流程将对社区产生不利影响并提高成本来解决问题。在这项工作中,我们通过决策过程,研究人员需要在他们的项目之前,期间和之后考虑研究和社区的更广泛影响。在本文中,我们遵守部署AI往往被忽视的关键决策,争论使用公平取证来发现系统中的偏见和公平问题,请断言负责任的人类循环将问责部署的系统,最后,反思了探索具有有害社会影响的研究议程的必要性。我们检查视觉隐私研究,并绘制可以广泛应用于人工智能的课程。我们的目标是提供对机器学习管道的系统分析,以获得视觉隐私和偏见问题。通过这个管道,我们希望培养利益相关者(例如,研究人员,建模者,公司)意识,因为这些问题在各种机器学习阶段传播。
translated by 谷歌翻译
Trained machine learning models are increasingly used to perform high-impact tasks in areas such as law enforcement, medicine, education, and employment. In order to clarify the intended use cases of machine learning models and minimize their usage in contexts for which they are not well suited, we recommend that released models be accompanied by documentation detailing their performance characteristics. In this paper, we propose a framework that we call model cards, to encourage such transparent model reporting. Model cards are short documents accompanying trained machine learning models that provide benchmarked evaluation in a variety of conditions, such as across different cultural, demographic, or phenotypic groups (e.g., race, geographic location, sex, Fitzpatrick skin type [15]) and intersectional groups (e.g., age and race, or sex and Fitzpatrick skin type) that are relevant to the intended application domains. Model cards also disclose the context in which models are intended to be used, details of the performance evaluation procedures, and other relevant information. While we focus primarily on human-centered machine learning models in the application fields of computer vision and natural language processing, this framework can be used to document any trained machine learning model. To solidify the concept, we provide cards for two supervised models: One trained to detect smiling faces in images, and one trained to detect toxic comments in text. We propose model cards as a step towards the responsible democratization of machine learning and related artificial intelligence technology, increasing transparency into how well artificial intelligence technology works. We hope this work encourages those releasing trained machine learning models to accompany model releases with similar detailed evaluation numbers and other relevant documentation.
translated by 谷歌翻译
机器学习数据集引起了对隐私,偏见和不道德应用的担忧,导致突出数据集的缩写,例如Dukemtmc,MS-Celeb-1M和微小图像。作为响应,机器学习界已在数据集创建中呼吁更高的道德标准。为了帮助通知这些努力,我们研究了三个有影响力的但道德问题的面部和人识别数据集 - 在野外(LFW),MS-Celeb-1M和DukemTM中标记的面孔 - 通过分析近1000篇引用它们的纸张。我们发现,创建衍生数据集和模型,更广泛的技术和社会变革,许可证缺乏清晰度,数据集管理实践可以引入广泛的道德问题。我们通过表明分布式方法来伤害消除数据集的整个生命周期的危害。
translated by 谷歌翻译