在过去几年中,图像分析的工业和社会应用中,神经网络分类器的越来越常见使用令人印象深刻的进展。然而,这种方法对算法偏压敏感,即阳性预测的欠或过度表示或在图像的特定子组中的更高预测误差。然后,我们在本文中介绍了一种新的方法来发动基于神经网络的分类器中的算法偏压。我们的方法是神经网络架构不可知的和缩放到大规模训练的图像集。它确实只使用基于Wassersein-2的损失函数超载了基于Wasserstein-2的正则化术语,我们基于预测分布的Gateaux衍生物,我们使用新模型对特定输出预测的影响传播了特定输出预测的影响。该型号是算法的合理性,使我们可以使用标准随机梯度 - 下降策略来使用我们的正则损耗。它的良好行为是在参考成人人口普查,Mnist,Celeba数据集中进行评估。
translated by 谷歌翻译
在本文中,我们提出了一种新的可解释性形式主义,旨在阐明测试集的每个输入变量如何影响机器学习模型的预测。因此,我们根据训练有素的机器学习决策规则提出了一个群体的解释性形式,它们是根据其对输入变量分布的可变性的反应。为了强调每个输入变量的影响,这种形式主义使用信息理论框架,该框架量化了基于熵投影的所有输入输出观测值的影响。因此,这是第一个统一和模型不可知的形式主义,使数据科学家能够解释输入变量之间的依赖性,它们对预测错误的影响以及它们对输出预测的影响。在大型样本案例中提供了熵投影的收敛速率。最重要的是,我们证明,计算框架中的解释具有低算法的复杂性,使其可扩展到现实生活中的大数据集。我们通过解释通过在各种数据集上使用XGBoost,随机森林或深层神经网络分类器(例如成人收入,MNIST,CELEBA,波士顿住房,IRIS以及合成的)上使用的复杂决策规则来说明我们的策略。最终,我们明确了基于单个观察结果的解释性策略石灰和摇摆的差异。可以通过使用自由分布的Python工具箱https://gems-ai.aniti.fr/来复制结果。
translated by 谷歌翻译
At the core of insurance business lies classification between risky and non-risky insureds, actuarial fairness meaning that risky insureds should contribute more and pay a higher premium than non-risky or less-risky ones. Actuaries, therefore, use econometric or machine learning techniques to classify, but the distinction between a fair actuarial classification and "discrimination" is subtle. For this reason, there is a growing interest about fairness and discrimination in the actuarial community Lindholm, Richman, Tsanakas, and Wuthrich (2022). Presumably, non-sensitive characteristics can serve as substitutes or proxies for protected attributes. For example, the color and model of a car, combined with the driver's occupation, may lead to an undesirable gender bias in the prediction of car insurance prices. Surprisingly, we will show that debiasing the predictor alone may be insufficient to maintain adequate accuracy (1). Indeed, the traditional pricing model is currently built in a two-stage structure that considers many potentially biased components such as car or geographic risks. We will show that this traditional structure has significant limitations in achieving fairness. For this reason, we have developed a novel pricing model approach. Recently some approaches have Blier-Wong, Cossette, Lamontagne, and Marceau (2021); Wuthrich and Merz (2021) shown the value of autoencoders in pricing. In this paper, we will show that (2) this can be generalized to multiple pricing factors (geographic, car type), (3) it perfectly adapted for a fairness context (since it allows to debias the set of pricing components): We extend this main idea to a general framework in which a single whole pricing model is trained by generating the geographic and car pricing components needed to predict the pure premium while mitigating the unwanted bias according to the desired metric.
translated by 谷歌翻译
尽管大规模的经验风险最小化(ERM)在各种机器学习任务中取得了高精度,但公平的ERM受到公平限制与随机优化的不兼容的阻碍。我们考虑具有离散敏感属性以及可能需要随机求解器的可能性大型模型和数据集的公平分类问题。现有的内部处理公平算法在大规模设置中要么是不切实际的,因为它们需要在每次迭代时进行大量数据,要么不保证它们会收敛。在本文中,我们开发了第一个具有保证收敛性的随机内处理公平算法。对于人口统计学,均衡的赔率和公平的机会均等的概念,我们提供了算法的略有变化,称为Fermi,并证明这些变化中的每一个都以任何批次大小收敛于随机优化。从经验上讲,我们表明Fermi适合具有多个(非二进制)敏感属性和非二进制目标的随机求解器,即使Minibatch大小也很小,也可以很好地表现。广泛的实验表明,与最先进的基准相比,FERMI实现了所有经过测试的设置之间的公平违规和测试准确性之间最有利的权衡,该基准是人口统计学奇偶校验,均衡的赔率,均等机会,均等机会。这些好处在小批量的大小和非二元分类具有大量敏感属性的情况下尤其重要,这使得费米成为大规模问题的实用公平算法。
translated by 谷歌翻译
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences. Fair ML has largely focused on the protection of single attributes in the simpler setting where both attributes and target outcomes are binary. However, the practical application in many a real-world problem entails the simultaneous protection of multiple sensitive attributes, which are often not simply binary, but continuous or categorical. To address this more challenging task, we introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces. This leads to two practical tools: first, the FairCOCCO Score, a normalised metric that can quantify fairness in settings with single or multiple sensitive attributes of arbitrary type; and second, a subsequent regularisation term that can be incorporated into arbitrary learning objectives to obtain fair predictors. These contributions address crucial gaps in the algorithmic fairness literature, and we empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
translated by 谷歌翻译
In past work on fairness in machine learning, the focus has been on forcing the prediction of classifiers to have similar statistical properties for people of different demographics. To reduce the violation of these properties, fairness methods usually simply rescale the classifier scores, ignoring similarities and dissimilarities between members of different groups. Yet, we hypothesize that such information is relevant in quantifying the unfairness of a given classifier. To validate this hypothesis, we introduce Optimal Transport to Fairness (OTF), a method that quantifies the violation of fairness constraints as the smallest Optimal Transport cost between a probabilistic classifier and any score function that satisfies these constraints. For a flexible class of linear fairness constraints, we construct a practical way to compute OTF as a differentiable fairness regularizer that can be added to any standard classification setting. Experiments show that OTF can be used to achieve an improved trade-off between predictive power and fairness.
translated by 谷歌翻译
本文考虑了在分解正常形式(DNF,ANDS的DNF,ANDS,相当于判定规则集)或联合正常形式(CNF,ORS)作为分类模型的联合正常形式的学习。为规则简化,将整数程序配制成最佳贸易分类准确性。我们还考虑公平设定,并扩大制定,以包括对两种不同分类措施的明确限制:机会平等和均等的赔率。列生成(CG)用于有效地搜索候选条款(连词或剖钉)的指数数量,而不需要启发式规则挖掘。此方法还会绑定所选规则集之间的间隙和培训数据上的最佳规则集。要处理大型数据集,我们建议使用随机化的近似CG算法。与三个最近提出的替代方案相比,CG算法主导了16个数据集中的8个中的精度简单折衷。当最大限度地提高精度时,CG与为此目的设计的规则学习者具有竞争力,有时发现明显更简单的解决方案,这些解决方案不太准确。与其他公平和可解释的分类器相比,我们的方法能够找到符合较严格的公平概念的规则集,以适度的折衷准确性。
translated by 谷歌翻译
算法公平旨在识别和校正机器学习算法中的偏差源。混淆,确保公平往往以准确性为止。我们在这项工作中提供正式工具,以便在算法公平中调和这一基本紧张。具体而言,我们将帕累托最优性的概念从多目标优化中寻求神经网络分类器的公平准确性帕累托。我们证明许多现有的算法公平方法正在执行所谓的线性标定方案,其具有恢复帕累托最佳解决方案的严重限制。相反,与线性方案相比,我们将Chebyshev标准化方案从理论上提供优越,并且在恢复Pareto最佳解决方案时没有更加计算繁重。
translated by 谷歌翻译
我们研究公平的机器学习(ML)设置,其中“上游”模型开发人员的任务是生产公平的ML模型,该模型将被几个类似但独特的“下游”用户使用。这种设置引入了新的挑战,这些挑战因许多现有的公平干预措施而尚未解决,这与现有的批评相呼应,即当前方法并非在现实世界公平的ML用例的多元化需求中广泛适用。为此,我们通过采用基于分配的公平分类视图来解决向上/下流设置。具体而言,我们引入了一种新的公平定义,分布奇偶校验,该定义衡量了跨受保护组的结果分布的差异,并提出了一种后处理方法,以使用最佳运输技术来最大程度地减少此措施。我们证明我们的方法能够为所有下游用户,跨各种公平定义创造更公平的成果,并在推理时间内在未标记的数据上工作。我们通过与几种类似方法和四个基准任务进行比较,通过比较实验验证了这一主张。最终,我们认为可以通过开发特定的干预措施来产生更公平的分类结果。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
文献中已经提出了各种公平限制,以减轻小组级统计偏见。它们的影响已在很大程度上评估了与一组敏感属性(例如种族或性别)相对应的不同人群。尽管如此,社区尚未观察到足够的探索,以实例限制公平的限制。基于影响功能的概念,该措施表征了训练示例对目标模型及其预测性能的影响,这项工作研究了施加公平性约束时训练示例的影响。我们发现,在某些假设下,关于公平限制的影响功能可以分解为训练示例的内核组合。提出的公平影响功能的一种有希望的应用是确定可疑的训练示例,这些训练示例可能通过对其影响得分进行排名来导致模型歧视。我们通过广泛的实验证明,对一部分重量数据示例进行培训会导致违反公平性的侵犯,而准确性的权衡。
translated by 谷歌翻译
基于机器学习的决策支持系统的利用率增加强调了导致所有利益相关者准确和公平的预测的必要性。在这项工作中,我们提出了一种新的方法,可以在训练期间提高神经网络模型的公平性。我们介绍了一系列公平性,增强了我们与传统的二进制交叉熵基准损耗一起使用的正规化组件。这些损失函数基于偏置奇偶校验分数(BPS),一个分数有助于使用单个数字量化模型中的偏差。在目前的工作中,我们调查这些正则化组件对偏见的行为和效果。我们在累犯预测任务以及基于人口普查的成人收入数据集的上下文中部署它们。结果表明,对于公平损失功能的良好选择,我们可以减少训练有素的模型的偏置,而不会降低精度,即使在不平衡数据集中也是如此。
translated by 谷歌翻译
为了减轻模型中不希望的偏差的影响,几种方法建议预先处理输入数据集,以通过防止敏感属性的推断来减少歧视风险。不幸的是,这些预处理方法中的大多数导致一代新分布与原始分布有很大不同,因此通常导致不切实际的数据。作为副作用,这种新的数据分布意味着需要重新训练现有模型才能做出准确的预测。为了解决这个问题,我们提出了一种新颖的预处理方法,我们将根据保护组的分布转换为所选目标一个,并具有附加的隐私约束,其目的是防止敏感敏感的推断属性。更确切地说,我们利用Wasserstein Gan和Attgan框架的最新作品来实现数据点的最佳运输以及强制保护属性推断的歧视器。我们提出的方法可以保留数据的可解释性,并且可以在不定义敏感组的情况下使用。此外,我们的方法可以专门建模现有的最新方法,从而提出对这些方法的统一观点。最后,关于真实和合成数据集的一些实验表明,我们的方法能够隐藏敏感属性,同时限制数据的变形并改善了后续数据分析任务的公平性。
translated by 谷歌翻译
自几十年前以来,已经证明了机器学习评估贷款申请人信誉的实用性。但是,自动决策可能会导致对群体或个人的不同治疗方法,可能导致歧视。本文基准了12种最大的偏见缓解方法,讨论其绩效,该绩效基于5个不同的公平指标,获得的准确性以及为金融机构提供的潜在利润。我们的发现表明,在确保准确性和利润的同时,实现公平性方面的困难。此外,它突出了一些表现最好和最差的人,并有助于弥合实验机学习及其工业应用之间的差距。
translated by 谷歌翻译
本文解决了在水模型部署民主化中采用了机器学习的一些挑战。第一个挑战是减少了在主动学习的帮助下减少了标签努力(因此关注数据质量),模型推断与Oracle之间的反馈循环:如在保险中,未标记的数据通常丰富,主动学习可能会成为一个重要的资产减少标签成本。为此目的,本文在研究其对合成和真实数据集的实证影响之前,阐述了各种古典主动学习方法。保险中的另一个关键挑战是模型推论中的公平问题。我们将在此主动学习框架中介绍和整合一个用于多级任务的后处理公平,以解决这两个问题。最后对不公平数据集的数值实验突出显示所提出的设置在模型精度和公平性之间存在良好的折衷。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
What does it mean for an algorithm to be biased? In U.S. law, unintentional bias is encoded via disparate impact, which occurs when a selection process has widely different outcomes for different groups, even as it appears to be neutral. This legal determination hinges on a definition of a protected class (ethnicity, gender) and an explicit description of the process.When computers are involved, determining disparate impact (and hence bias) is harder. It might not be possible to disclose the process. In addition, even if the process is open, it might be hard to elucidate in a legal setting how the algorithm makes its decisions. Instead of requiring access to the process, we propose making inferences based on the data it uses.We present four contributions. First, we link disparate impact to a measure of classification accuracy that while known, has received relatively little attention. Second, we propose a test for disparate impact based on how well the protected class can be predicted from the other attributes. Third, we describe methods by which data might be made unbiased. Finally, we present empirical evidence supporting the effectiveness of our test for disparate impact and our approach for both masking bias and preserving relevant information in the data. Interestingly, our approach resembles some actual selection practices that have recently received legal scrutiny.
translated by 谷歌翻译
我们提出了一种可扩展的后处理算法,用于衰减培训的型号,包括深度神经网络(DNN),我们证明是通过限制其多余的贝叶斯风险而近乎最佳。我们在经典算法以及现代DNN架构上凭经验验证其对标准基准数据集的优势,并证明它在以前处理的同时表现出先前的后处理方法。此外,我们表明,该算法对于在刻度培训的模型是特别有效的,其中后处理是自然和实际的选择。
translated by 谷歌翻译
分类,一种重大研究的数据驱动机器学习任务,驱动越来越多的预测系统,涉及批准的人类决策,如贷款批准和犯罪风险评估。然而,分类器经常展示歧视性行为,特别是当呈现有偏置数据时。因此,分类公平已经成为一个高优先级的研究区。数据管理研究显示与数据和算法公平有关的主题的增加和兴趣,包括公平分类的主题。公平分类的跨学科努力,具有最大存在的机器学习研究,导致大量的公平概念和尚未系统地评估和比较的广泛方法。在本文中,我们对13个公平分类方法和额外变种的广泛分析,超越,公平,公平,效率,可扩展性,对数据误差的鲁棒性,对潜在的ML模型,数据效率和使用各种指标的稳定性的敏感性和稳定性现实世界数据集。我们的分析突出了对不同指标的影响的新颖见解和高级方法特征对不同方面的性能方面。我们还讨论了选择适合不同实际设置的方法的一般原则,并确定以数据管理为中心的解决方案可能产生最大影响的区域。
translated by 谷歌翻译
A recent explosion of research focuses on developing methods and tools for building fair predictive models. However, most of this work relies on the assumption that the training and testing data are representative of the target population on which the model will be deployed. However, real-world training data often suffer from selection bias and are not representative of the target population for many reasons, including the cost and feasibility of collecting and labeling data, historical discrimination, and individual biases. In this paper, we introduce a new framework for certifying and ensuring the fairness of predictive models trained on biased data. We take inspiration from query answering over incomplete and inconsistent databases to present and formalize the problem of consistent range approximation (CRA) of answers to queries about aggregate information for the target population. We aim to leverage background knowledge about the data collection process, biased data, and limited or no auxiliary data sources to compute a range of answers for aggregate queries over the target population that are consistent with available information. We then develop methods that use CRA of such aggregate queries to build predictive models that are certifiably fair on the target population even when no external information about that population is available during training. We evaluate our methods on real data and demonstrate improvements over state of the art. Significantly, we show that enforcing fairness using our methods can lead to predictive models that are not only fair, but more accurate on the target population.
translated by 谷歌翻译