根据诊断各种疾病的胸部X射线图像的可观增长,以及收集广泛的数据集,使用深神经网络进行了自动诊断程序,已经占据了专家的思想。计算机视觉中的大多数可用方法都使用CNN主链来获得分类问题的高精度。然而,最近的研究表明,在NLP中成为事实上方法的变压器也可以优于许多基于CNN的模型。本文提出了一个基于SWIN变压器的多标签分类深模型,作为实现最新诊断分类的骨干。它利用了头部体系结构来利用多层感知器(也称为MLP)。我们评估了我们的模型,该模型称为“ Chest X-Ray14”,最广泛,最大的X射线数据集之一,该数据集由30,000多名14例著名胸部疾病的患者组成100,000多个额叶/背景图像。我们的模型已经用几个数量的MLP层用于头部设置,每个模型都在所有类别上都达到了竞争性的AUC分数。胸部X射线14的全面实验表明,与以前的SOTA平均AUC为0.799相比,三层头的平均AUC得分为0.810,其平均AUC得分为0.810。我们建议对现有方法进行公平基准测试的实验设置,该设置可以用作未来研究的基础。最后,我们通过确认所提出的方法参与胸部的病理相关区域,从而跟进了结果。
translated by 谷歌翻译
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO testdev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-theart by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at https://github. com/microsoft/Swin-Transformer.
translated by 谷歌翻译
随着计算机技术的开发,人工智能已经出现了各种模型。在自然语言处理(NLP)成功之后,变压器模型已应用于计算机视觉(CV)。放射科医生在当今迅速发展的医疗领域中继续面临多重挑战,例如增加工作量和增加的诊断需求。尽管以前有一些常规的肺癌检测方法,但仍需要提高其准确性,尤其是在现实的诊断情况下。本文创造性地提出了一种基于有效变压器的分割方法,并将其应用于医学图像分析。该算法通过分析肺癌数据来完成肺癌分类和细分的任务,并旨在为医务人员提供有效的技术支持。此外,我们在各个方面进行了评估并比较了结果。对于分类任务,通过定期培训和SWIN-B在两项决议中通过预训练的最高准确性可高达82.3%。对于分割任务,我们使用预训练来帮助模型提高实验的准确性。这三个模型的准确性达到95%以上。实验表明该算法可以很好地应用于肺癌分类和分割任务。
translated by 谷歌翻译
建立具有可信赖性的AI模型非常重要,尤其是在医疗保健等受监管的地区。在解决Covid-19时,以前的工作将卷积神经网络用作骨干建筑,该骨干建筑物易于过度宣告和过度自信做出决策,使它们不那么值得信赖 - 在医学成像背景下的关键缺陷。在这项研究中,我们提出了一种使用视觉变压器的功能学习方法,该方法使用基于注意力的机制,并检查变形金刚作为医学成像的新骨干结构的表示能力。通过对COVID-19胸部X光片进行分类的任务,我们研究了概括能力是否仅从视觉变形金刚的建筑进步中受益。通过使用“信任评分”计算和视觉解释性技术,对模型的可信度进行了定量和定性评估。我们得出的结论是,基于注意力的特征学习方法在建立可信赖的医疗保健深度学习模型方面有希望。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
视觉变压器在众多计算机视觉任务上表现出了巨大的成功。然而,由于计算复杂性和记忆足迹是二次的,因此其中心分量(软磁性注意力)禁止视觉变压器扩展到高分辨率图像。尽管在自然语言处理(NLP)任务中引入了线性注意以减轻类似问题,但直接将现有的线性注意力应用于视觉变压器可能不会导致令人满意的结果。我们研究了这个问题,发现与NLP任务相比,计算机视觉任务更多地关注本地信息。基于这一观察结果,我们提出了附近的关注,该关注引入了具有线性复杂性的视觉变压器的局部性偏见。具体而言,对于每个图像补丁,我们根据其相邻贴片测量的2D曼哈顿距离调整了注意力重量。在这种情况下,相邻的补丁比遥远的补丁会受到更大的关注。此外,由于我们的附近注意力要求令牌长度比特征维度大得多,以显示其效率优势,因此我们进一步提出了一个新的附近视觉变压器(VVT)结构,以减少特征维度而不脱离准确性。我们在CIFAR100,ImagEnet1k和ADE20K数据集上进行了广泛的实验,以验证我们方法的有效性。当输入分辨率增加时,与以前的基于变压器和基于卷积的网络相比,GFLOP的增长率较慢。特别是,我们的方法达到了最新的图像分类精度,其参数比以前的方法少50%。
translated by 谷歌翻译
图像中的场景细分是视觉内容理解中的一个基本而又具有挑战性的问题,即学习一个模型,将每个图像像素分配给分类标签。这项学习任务的挑战之一是考虑空间和语义关系以获得描述性特征表示,因此从多个量表中学习特征图是场景细分中的一种常见实践。在本文中,我们探讨了在多尺度图像窗口中自我发挥的有效使用来学习描述性视觉特征,然后提出三种不同的策略来汇总这些特征图以解码特征表示形式以进行密集的预测。我们的设计基于最近提出的SWIN Transformer模型,该模型完全放弃了卷积操作。借助简单而有效的多尺度功能学习和聚合,我们的模型在四个公共场景细分数据集,Pascal VOC2012,Coco-STUFF 10K,ADE20K和CITYSCAPES上实现了非常有希望的性能。
translated by 谷歌翻译
目的:在手术规划之前,CT图像中肝血管的分割是必不可少的,并引起了医学图像分析界的广泛兴趣。由于结构复杂,对比度背景下,自动肝脏血管分割仍然特别具有挑战性。大多数相关的研究采用FCN,U-Net和V-Net变体作为骨干。然而,这些方法主要集中在捕获多尺度局部特征,这可能导致由于卷积运营商有限的地区接收领域而产生错误分类的体素。方法:我们提出了一种强大的端到端血管分割网络,通过将SWIN变压器扩展到3D并采用卷积和自我关注的有效组合,提出了一种被称为电感偏置的多头注意船网(IBIMHAV-NET)的稳健端到端血管分割网络。在实践中,我们介绍了Voxel-Wise嵌入而不是修补程序嵌入,以定位精确的肝脏血管素,并采用多尺度卷积运营商来获得局部空间信息。另一方面,我们提出了感应偏置的多头自我关注,其学习从初始化的绝对位置嵌入的归纳偏置相对位置嵌入嵌入。基于此,我们可以获得更可靠的查询和键矩阵。为了验证我们模型的泛化,我们测试具有不同结构复杂性的样本。结果:我们对3Dircadb数据集进行了实验。四种测试病例的平均骰子和敏感性为74.8%和77.5%,超过现有深度学习方法的结果和改进的图形切割方法。结论:拟议模型IBIMHAV-Net提供一种具有交错架构的自动,精确的3D肝血管分割,可更好地利用CT卷中的全局和局部空间特征。它可以进一步扩展到其他临床数据。
translated by 谷歌翻译
在语言领域取得成功之后,自我发挥机制(变压器)在视觉领域采用并取得了巨大的成功。此外,作为另一个流中的多层感知器(MLP),也在视觉域中探索。除传统CNN以外,这些架构最近引起了人们的关注,并提出了许多方法。作为将参数效率和性能与图像识别中的局部性和层次结合在一起的一种,我们提出了将两个流合并的GSWIN。Swin Transformer和(多头)GMLP。我们表明,与具有较小模型大小的SWIN Transformer相比,GSWIN可以在三个视觉任务,图像分类,对象检测和语义分割方面实现更好的准确性。
translated by 谷歌翻译
多年来,卷积神经网络(CNN)已成为多种计算机视觉任务的事实上的标准。尤其是,基于开创性体系结构(例如具有跳过连接的U形模型)或具有金字塔池的Artous卷积的深度神经网络已针对广泛的医学图像分析任务量身定制。此类架构的主要优点是它们容易拘留多功能本地功能。然而,作为一般共识,CNN无法捕获由于卷积操作的固有性能的内在特性而捕获长期依赖性和空间相关性。另外,从全球信息建模中获利的变压器源于自我发项机制,最近在自然语言处理和计算机视觉方面取得了出色的表现。然而,以前的研究证明,局部和全局特征对于密集预测的深层模型至关重要,例如以不同的形状和配置对复杂的结构进行分割。为此,本文提出了TransDeeplab,这是一种新型的DeepLab样纯变压器,用于医学图像分割。具体而言,我们用移动的窗口利用层次旋转式变形器来扩展DeepLabV3并建模非常有用的空间金字塔池(ASPP)模块。对相关文献的彻底搜索结果是,我们是第一个用基于纯变压器模型对开创性DeepLab模型进行建模的人。关于各种医学图像分割任务的广泛实验证明,我们的方法在视觉变压器和基于CNN的方法的合并中表现出色或与大多数当代作品相提并论,并显着降低了模型复杂性。代码和训练有素的模型可在https://github.com/rezazad68/transdeeplab上公开获得
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译
卷积神经网络(CNN)已在许多计算机视觉任务中广泛使用。但是,CNN具有固定的接收场,并且缺乏远程感知的能力,这对于人类的姿势估计至关重要。由于其能够捕获像素之间的远程依赖性的能力,因此最近对计算机视觉应用程序采用了变压器体系结构,并被证明是一种高效的体系结构。我们有兴趣探索其在人类姿势估计中的能力,因此提出了一个基于变压器结构的新型模型,并通过特征金字塔融合结构增强了。更具体地说,我们使用预训练的Swin变压器作为主链,并从输入图像中提取特征,我们利用特征金字塔结构从不同阶段提取特征图。通过将功能融合在一起,我们的模型可以预测关键点热图。我们研究的实验结果表明,与最新的基于CNN的模型相比,提出的基于变压器的模型可以实现更好的性能。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
变形金刚在自然语言处理方面取得了巨大的成功。由于变压器中自我发挥机制的强大能力,研究人员为各种计算机视觉任务(例如图像识别,对象检测,图像分割,姿势估计和3D重建)开发了视觉变压器。本文介绍了有关视觉变形金刚的不同建筑设计和培训技巧(包括自我监督的学习)文献的全面概述。我们的目标是为开放研究机会提供系统的审查。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
预计未来几十年的全球粮食不安全将加速气候变化率和人口迅速增加。在这种静脉中,重要的是在每种饮食生产水平上消除效率低下。最近深入学习的进步可以帮助降低这种效率低下,但他们的申请尚未成为整个行业的主流,以大规模的规模诱导经济成本。为此,已将现代技术(如CNNS(卷积神经网络)应用于RPQD(原始产生质量检测)任务。另一方面,变压器在其他方式中的视野中的成功首次亮相使我们能够在RPQD中预计这些基于变压器的模型更好的性能。在这项工作中,我们专门调查了最近的最先进的水流(移位的Windows)变压器,这些变压器可以在窗口和窗口间的方式中计算自我关注。我们将Swin变压器与CNN模型进行比较四个RPQD图像数据集,每个CNN模型都包含不同种类的生成:水果和蔬菜,鱼类,猪肉和牛肉。我们观察到Swin Transformer不仅实现了更好或更有竞争力的性能,而且还具有数据和计算效率,使其成为现实世界的实际部署的理想选择。据我们所知,这是第一个对RPQD任务的大规模实证研究,我们希望在未来的作品中更加关注。
translated by 谷歌翻译
计算机辅助医学图像分割已广泛应用于诊断和治疗,以获得靶器官和组织的形状和体积的临床有用信息。在过去的几年中,基于卷积神经网络(CNN)的方法(例如,U-Net)占主导地位,但仍遭受了不足的远程信息捕获。因此,最近的工作提出了用于医学图像分割任务的计算机视觉变压器变体,并获得了有希望的表现。这种变压器通过计算配对贴片关系来模拟远程依赖性。然而,它们促进了禁止的计算成本,尤其是在3D医学图像(例如,CT和MRI)上。在本文中,我们提出了一种称为扩张变压器的新方法,该方法在本地和全球范围内交替捕获的配对贴片关系进行自我关注。灵感来自扩张卷积核,我们以扩张的方式进行全球自我关注,扩大接收领域而不增加所涉及的斑块,从而降低计算成本。基于这种扩展变压器的设计,我们构造了一个用于3D医学图像分割的U形编码器解码器分层体系结构。 Synapse和ACDC数据集的实验表明,我们的D-Ager Model从头开始培训,以低计算成本从划痕训练,优于各种竞争力的CNN或基于变压器的分段模型,而不耗时的每训练过程。
translated by 谷歌翻译
Covid-19是一种攻击上呼吸道和肺部的新型病毒。它的人对人的传播性非常迅速,这在个人生活的各个方面都引起了严重的问题。尽管一些感染的人可能仍然完全无症状,但经常被目睹有轻度至重度症状。除此之外,全球成千上万的死亡案件表明,检测Covid-19是社区的紧急需求。实际上,这是在筛选医学图像(例如计算机断层扫描(CT)和X射线图像)的帮助下进行的。但是,繁琐的临床程序和大量的每日病例对医生构成了巨大挑战。基于深度学习的方法在广泛的医疗任务中表现出了巨大的潜力。结果,我们引入了一种基于变压器的方法,用于使用紧凑卷积变压器(CCT)自动从X射线图像中自动检测COVID-19。我们的广泛实验证明了该方法的疗效,精度为98%,比以前的作品表现优于先前的作品。
translated by 谷歌翻译
变形金刚最近在计算机视觉社区中引起了极大的关注。然而,缺乏关于图像大小的自我注意力机制的可扩展性限制了它们在最先进的视觉骨架中的广泛采用。在本文中,我们介绍了一种高效且可扩展的注意模型,我们称之为多轴注意,该模型由两个方面组成:阻止局部和扩张的全球关注。这些设计选择允许仅具有线性复杂性的任意输入分辨率上进行全局本地空间相互作用。我们还通过有效地将我们提出的注意模型与卷积混合在一起,提出了一个新的建筑元素,因此,通过简单地在多个阶段重复基本的构建块,提出了一个简单的层次视觉主链,称为Maxvit。值得注意的是,即使在早期的高分辨率阶段,Maxvit也能够在整个网络中“看到”。我们证明了模型在广泛的视觉任务上的有效性。根据图像分类,Maxvit在各种设置下实现最先进的性能:没有额外的数据,Maxvit获得了86.5%的Imagenet-1K Top-1精度;使用Imagenet-21K预训练,我们的模型可实现88.7%的TOP-1精度。对于下游任务,麦克斯维特(Maxvit)作为骨架可在对象检测以及视觉美学评估方面提供有利的性能。我们还表明,我们提出的模型表达了ImageNet上强大的生成建模能力,这表明了Maxvit块作为通用视觉模块的优势潜力。源代码和训练有素的模型将在https://github.com/google-research/maxvit上找到。
translated by 谷歌翻译
在本文中,我们提出了一个基于变压器的架构,即TF-Grasp,用于机器人Grasp检测。开发的TF-Grasp框架具有两个精心设计的设计,使其非常适合视觉抓握任务。第一个关键设计是,我们采用本地窗口的注意来捕获本地上下文信息和可抓取对象的详细特征。然后,我们将跨窗户注意力应用于建模遥远像素之间的长期依赖性。对象知识,环境配置和不同视觉实体之间的关系汇总以进行后续的掌握检测。第二个关键设计是,我们构建了具有跳过连接的层次编码器架构,从编码器到解码器提供了浅特征,以启用多尺度功能融合。由于具有强大的注意力机制,TF-Grasp可以同时获得局部信息(即对象的轮廓),并建模长期连接,例如混乱中不同的视觉概念之间的关系。广泛的计算实验表明,TF-GRASP在康奈尔(Cornell)和雅克(Jacquard)握把数据集上分别获得了较高的结果与最先进的卷积模型,并获得了97.99%和94.6%的较高精度。使用7DOF Franka Emika Panda机器人进行的现实世界实验也证明了其在各种情况下抓住看不见的物体的能力。代码和预培训模型将在https://github.com/wangshaosun/grasp-transformer上找到
translated by 谷歌翻译