需要在最终用户设备(例如智能手机)上训练DNN模型的需求,而随着需要改善数据隐私并减少通信开销的需求。与具有功能强大CPU和GPU的数据中心服务器不同,现代智能手机由多种专门内核组成,遵循系统启动(SOC)架构,共同执行各种任务。我们观察到,在智能手机SOC上的培训DNN不仔细考虑其资源限制不仅会导致次优培训表现,而且还会显着影响用户体验。在本文中,我们展示了天鹅,这是一种神经引擎,可在不损害用户体验的情况下优化智能手机SOC的DNN培训。广泛的大规模评估表明,天鹅可以在最先进的情况下提高1.2-23.3倍的表现。
translated by 谷歌翻译
我们展示了FedScale,这是一种多样化的挑战和现实的基准数据集,以便于可扩展,全面,可重复的联邦学习(FL)研究。 FedScale数据集是大规模的,包括不同的重要性范围,例如图像分类,对象检测,字预测和语音识别。对于每个数据集,我们使用逼真的数据拆分和评估度量提供统一的评估协议。为了满足在规模中繁殖现实流体的压力需求,我们还建立了一个有效的评估平台,以简化和标准化流程实验设置和模型评估的过程。我们的评估平台提供灵活的API来实现新的FL算法,并包括具有最小开发人员的新执行后端。最后,我们在这些数据集上执行深入的基准实验。我们的实验表明,在现实流动特征下,在系统的异质性感知协同优化和统计效率下提供了富有成效的机遇。 FedScale是具有允许许可的开放源,积极维护,我们欢迎来自社区的反馈和贡献。
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译
联合学习(FL)是AI的新出现的分支,它有助于边缘设备进行协作训练全球机器学习模型,而无需集中数据并默认使用隐私。但是,尽管进步显着,但这种范式面临着各种挑战。具体而言,在大规模部署中,客户异质性是影响培训质量(例如准确性,公平性和时间)的规范。此外,这些电池约束设备的能源消耗在很大程度上尚未探索,这是FL的广泛采用的限制。为了解决这个问题,我们开发了EAFL,这是一种能源感知的FL选择方法,该方法考虑了能源消耗以最大程度地提高异质目标设备的参与。 \ Scheme是一种功能感知的培训算法,该算法与电池电量更高的挑选客户结合使用,并具有最大化系统效率的能力。我们的设计共同最大程度地减少了临界时间,并最大程度地提高了其余的电池电池水平。 \方案将测试模型的精度提高了高达85 \%,并将客户的辍学率降低了2.45 $ \ times $。
translated by 谷歌翻译
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的越来越多的应用,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未对FL进行研究,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越受欢迎,因此需要对其中的FL进行研究。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用佛罗里达州客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的个性化模型。我们还提出了具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的新型数据分配方案,以将现有HAR数据集扩展到联合设置。我们在三个多设备HAR数据集上的实验结果表明,火焰的表现优于各种基准,F1得分高4.3-25.8%,能源效率提高1.02-2.86倍,并高达2.06倍的收敛速度,以通过FL的公平分布来获得目标准确性工作量。
translated by 谷歌翻译
联合学习(FL)可以使用学习者使用本地数据进行分布式培训,从而增强隐私和减少沟通。但是,它呈现出与数据分布,设备功能和参与者可用性的异质性有关的众多挑战,作为部署量表,这可能会影响模型融合和偏置。现有的FL方案使用随机参与者选择来提高公平性;然而,这可能导致资源低效和更低的质量培训。在这项工作中,我们系统地解决了FL中的资源效率问题,展示了智能参与者选择的好处,并将更新从争吵的参与者纳入。我们展示了这些因素如何实现资源效率,同时还提高了训练有素的模型质量。
translated by 谷歌翻译
传统的深度学习方法(DL)需要在中央服务器上收集和处理的培训数据,这些中央服务器通常在保健等隐私敏感域中挑战。为此,提出了一种新的学习范式,称为联合学习(FL),在解决隐私和数据所有权问题的同时将DL的潜力带到了这些域。 FL使远程客户端能够在保持数据本地时学习共享ML模型。然而,传统的FL系统面临多种挑战,例如可扩展性,复杂的基础设施管理,并且由于空闲客户端而被浪费的计算和产生的成本。 FL系统的这些挑战与无服务器计算和功能 - AS-Service(FAAS)平台旨在解决的核心问题密切对齐。这些包括快速可扩展性,无基础设施管理,自动缩放为空闲客户端,以及每次使用付费计费模型。为此,我们为无服务器FL展示了一个新颖的系统和框架,称为不发烟。我们的系统支持多个商业和自主主机的FAAS提供商,可以在机构数据中心和边缘设备上部署在云端,内部部署。据我们所知,我们是第一个能够在一大面料的异构FAAS提供商中启用FL,同时提供安全性和差异隐私等重要功能。我们展示了全面的实验,即使用我们的系统可以成功地培训多达200个客户功能的不同任务,更容易实现。此外,我们通过将其与传统的FL系统进行比较来证明我们的方法的实际可行性,并表明它可以更便宜,更资源效率更便宜。
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
联邦学习(FL)已成为一种前瞻性解决方案,可促进对高性能的集中模型的培训,而不会损害用户的隐私。尽管成功,但目前的研究受到了在实验初期建立现实的大规模FL系统的可能性的限制。仿真可以帮助加速这一过程。为了促进异构客户的有效可扩展的FL模拟,我们设计和实施ProteA,这是使用FL框架花朵在联合系统中灵活且轻巧的客户型分析组件。它允许自动收集系统级统计信息并估算每个客户所需的资源,从而以资源感知方式运行模拟。结果表明,我们的设计成功地增加了1.66 $ \ times $ $更快的壁挂时间和2.6 $ \ times $更好的GPU利用率的平行性,这可以对异构客户进行大规模实验。
translated by 谷歌翻译
Federated Learning (FL) is a machine learning paradigm that enables the training of a shared global model across distributed clients while keeping the training data local. While most prior work on designing systems for FL has focused on using stateful always running components, recent work has shown that components in an FL system can greatly benefit from the usage of serverless computing and Function-as-a-Service technologies. To this end, distributed training of models with severless FL systems can be more resource-efficient and cheaper than conventional FL systems. However, serverless FL systems still suffer from the presence of stragglers, i.e., slow clients due to their resource and statistical heterogeneity. While several strategies have been proposed for mitigating stragglers in FL, most methodologies do not account for the particular characteristics of serverless environments, i.e., cold-starts, performance variations, and the ephemeral stateless nature of the function instances. Towards this, we propose FedLesScan, a novel clustering-based semi-asynchronous training strategy, specifically tailored for serverless FL. FedLesScan dynamically adapts to the behaviour of clients and minimizes the effect of stragglers on the overall system. We implement our strategy by extending an open-source serverless FL system called FedLess. Moreover, we comprehensively evaluate our strategy using the 2nd generation Google Cloud Functions with four datasets and varying percentages of stragglers. Results from our experiments show that compared to other approaches FedLesScan reduces training time and cost by an average of 8% and 20% respectively while utilizing clients better with an average increase in the effective update ratio of 17.75%.
translated by 谷歌翻译
Federated Learning is a distributed machine learning approach which enables model training on a large corpus of decentralized data. We have built a scalable production system for Federated Learning in the domain of mobile devices, based on TensorFlow. In this paper, we describe the resulting high-level design, sketch some of the challenges and their solutions, and touch upon the open problems and future directions.
translated by 谷歌翻译
本文介绍了FLSYS的设计,实施和评估,一种支持移动应用的深度学习模型的移动云联合学习(FL)系统。 Flsys是创建使用这些模型的FL模型和应用程序开放生态系统的关键组件。 FLSYS旨在使用在智能手机上收集的移动感应数据,平衡模型性能,在手机上使用资源消耗,容忍手机通信故障,并在云中实现可扩展性。在FLSYS中,可以通过不同的应用程序培训云中具有不同流量的不同DL模型,并通过不同的应用程序同时访问和访问。此外,Flsys为第三方应用程序开发人员提供了培训FL模型的共同API。 flsys是在Android和AWS云中实现的。我们在野生FL模型中与人类活动识别(HAR)共同设计了FLSYS。在五个月的时间内,在100+大学生手机的两个地区收集了掌握数据。我们实施了Har-Wild,一种针对移动设备定制的CNN模型,具有数据增强机制,以减轻非独立和相同分布的(非IID)数据的问题,这些数据影响野外的流动模型训练。情绪分析(SA)模型用于演示FLSYS如何有效地支持并发模型,并且它使用446个用户的DataSet具有46,000多个推文。我们对Android手机和仿真器进行了广泛的实验,表明Flsys实现了良好的模型实用性和实际系统性能。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
Federated learning (FL) on deep neural networks facilitates new applications at the edge, especially for wearable and Internet-of-Thing devices. Such devices capture a large and diverse amount of data, but they have memory, compute, power, and connectivity constraints which hinder their participation in FL. We propose Centaur, a multitier FL framework, enabling ultra-constrained devices to efficiently participate in FL on large neural nets. Centaur combines two major ideas: (i) a data selection scheme to choose a portion of samples that accelerates the learning, and (ii) a partition-based training algorithm that integrates both constrained and powerful devices owned by the same user. Evaluations, on four benchmark neural nets and three datasets, show that Centaur gains ~10% higher accuracy than local training on constrained devices with ~58% energy saving on average. Our experimental results also demonstrate the superior efficiency of Centaur when dealing with imbalanced data, client participation heterogeneity, and various network connection probabilities.
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
如今,DNN在边缘设备上无处不在。随着其重要性和用例的越来越重要,它不太可能将所有DNN包装到设备内存中,并期望每个推断都被加热。因此,寒冷的推断,读取,初始化和执行DNN模型的过程变得司空见惯,并且迫切要求优化其性能。为此,我们提出了NNV12,这是第一个为冷推理NNV12优化的设备推理引擎是在3个新颖的优化旋钮上构建的:为每个DNN操作员选择适当的内核(实现),绕过权重转换过程,以缓存该帖子。 - 在磁盘上转移权重,并在不对称处理器上进行了许多核的管道执行。为了解决巨大的搜索空间,NNV12采用了基于启发式的计划来获得近乎最佳的内核计划计划。我们完全实施了NNV12的原型,并在广泛的实验中评估了其性能。它表明,与Edge CPU和GPU上的最先进的DNN发动机相比,NNV12的达到15.2倍和401.5倍。
translated by 谷歌翻译
Federated learning (FL) has emerged as a solution to deal with the risk of privacy leaks in machine learning training. This approach allows a variety of mobile devices to collaboratively train a machine learning model without sharing the raw on-device training data with the cloud. However, efficient edge deployment of FL is challenging because of the system/data heterogeneity and runtime variance. This paper optimizes the energy-efficiency of FL use cases while guaranteeing model convergence, by accounting for the aforementioned challenges. We propose FedGPO based on a reinforcement learning, which learns how to identify optimal global parameters (B, E, K) for each FL aggregation round adapting to the system/data heterogeneity and stochastic runtime variance. In our experiments, FedGPO improves the model convergence time by 2.4 times, and achieves 3.6 times higher energy efficiency over the baseline settings, respectively.
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
In this paper, we increase the availability and integration of devices in the learning process to enhance the convergence of federated learning (FL) models. To address the issue of having all the data in one location, federated learning, which maintains the ability to learn over decentralized data sets, combines privacy and technology. Until the model converges, the server combines the updated weights obtained from each dataset over a number of rounds. The majority of the literature suggested client selection techniques to accelerate convergence and boost accuracy. However, none of the existing proposals have focused on the flexibility to deploy and select clients as needed, wherever and whenever that may be. Due to the extremely dynamic surroundings, some devices are actually not available to serve as clients in FL, which affects the availability of data for learning and the applicability of the existing solution for client selection. In this paper, we address the aforementioned limitations by introducing an On-Demand-FL, a client deployment approach for FL, offering more volume and heterogeneity of data in the learning process. We make use of the containerization technology such as Docker to build efficient environments using IoT and mobile devices serving as volunteers. Furthermore, Kubernetes is used for orchestration. The Genetic algorithm (GA) is used to solve the multi-objective optimization problem due to its evolutionary strategy. The performed experiments using the Mobile Data Challenge (MDC) dataset and the Localfed framework illustrate the relevance of the proposed approach and the efficiency of the on-the-fly deployment of clients whenever and wherever needed with less discarded rounds and more available data.
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译