我们呈现FURTIT,这是一种简单的3D形状分割网络的高效学习方法。FURTIT基于自我监督的任务,可以将3D形状的表面分解成几何基元。可以很容易地应用于用于3D形状分割的现有网络架构,并提高了几张拍摄设置中的性能,因为我们在广泛使用的ShapEnet和Partnet基准中展示。FISHIT在这种环境中优于现有的现有技术,表明对基元的分解是在学习对语义部分预测的陈述之前的有用。我们提出了许多实验,改变了几何基元和下游任务的选择,以证明该方法的有效性。
translated by 谷歌翻译
我们建议在2D域中利用自我监督的技术来实现细粒度的3D形状分割任务。这是受到观察的启发:基于视图的表面表示比基于点云或体素占用率的3D对应物更有效地建模高分辨率表面细节和纹理。具体而言,给定3D形状,我们将其从多个视图中渲染,并在对比度学习框架内建立密集的对应学习任务。结果,与仅在2D或3D中使用自学的替代方案相比,学到的2D表示是视图不变和几何一致的,在对有限的标记形状进行培训时,可以更好地概括概括。对纹理(渲染peple)和未纹理(partnet)3D数据集的实验表明,我们的方法在细粒部分分割中优于最先进的替代方案。当仅一组稀疏的视图可供训练或形状纹理时,对基准的改进就会更大,这表明MVDecor受益于2D处理和3D几何推理。
translated by 谷歌翻译
我们提出了一个Point2cyl,一个监督网络将原始3D点云变换到一组挤出缸。从原始几何到CAD模型的逆向工程是能够在形状编辑软件中操纵3D数据的重要任务,从而在许多下游应用中扩展其使用。特别地,具有挤出圆柱序列的CAD模型的形式 - 2D草图加上挤出轴和范围 - 以及它们的布尔组合不仅广泛应用于CAD社区/软件,而且相比具有很大的形状表现性具有有限类型的基元(例如,平面,球形和汽缸)。在这项工作中,我们介绍了一种神经网络,通过首先学习底层几何代理来解决挤出汽缸分解问题的挤出圆柱分解问题。精确地,我们的方法首先预测每点分割,基础/桶标签和法线,然后估计可分离和闭合形式配方中的底层挤出参数。我们的实验表明,我们的方法展示了两个最近CAD数据集,融合画廊和Deepcad上的最佳性能,我们进一步展示了逆向工程和编辑的方法。
translated by 谷歌翻译
Deep learning has attained remarkable success in many 3D visual recognition tasks, including shape classification, object detection, and semantic segmentation. However, many of these results rely on manually collecting densely annotated real-world 3D data, which is highly time-consuming and expensive to obtain, limiting the scalability of 3D recognition tasks. Thus, we study unsupervised 3D recognition and propose a Self-supervised-Self-Labeled 3D Recognition (SL3D) framework. SL3D simultaneously solves two coupled objectives, i.e., clustering and learning feature representation to generate pseudo-labeled data for unsupervised 3D recognition. SL3D is a generic framework and can be applied to solve different 3D recognition tasks, including classification, object detection, and semantic segmentation. Extensive experiments demonstrate its effectiveness. Code is available at https://github.com/fcendra/sl3d.
translated by 谷歌翻译
最近对隐含形状表示的兴趣日益增长。与明确的陈述相反,他们没有解决局限性,他们很容易处理各种各样的表面拓扑。为了了解这些隐式表示,电流方法依赖于一定程度的形状监督(例如,内部/外部信息或距离形状知识),或者至少需要密集点云(以近似距离 - 到 - 到 - 形状)。相比之下,我们介绍{\方法},一种用于学习形状表示的自我监督方法,从可能极其稀疏的点云。就像在水牛的针问题一样,我们在点云上“掉落”(样本)针头,认为,静统计地靠近表面,针端点位于表面的相对侧。不需要形状知识,点云可以高稀疏,例如,作为车辆获取的Lidar点云。以前的自我监督形状表示方法未能在这种数据上产生良好的结果。我们获得定量结果与现有的形状重建数据集上现有的监督方法标准,并在Kitti等硬自动驾驶数据集中显示有前途的定性结果。
translated by 谷歌翻译
我们提出切碎,这是一种3D形状区域分解的方法。 Shred将3D点云作为输入,并使用学习的本地操作来产生近似细粒零件实例的分割。我们将切碎的分解操作赋予了三个分解操作:分裂区域,固定区域之间的边界,并将区域合并在一起。模块经过独立和本地培训,使切碎可以为在培训过程中未见的类别生成高质量的细分。我们通过Partnet的细粒细分进行训练和评估切碎;使用其合并 - 阈值超参数,我们表明,在任何所需的分解粒度下,切碎的分割可以更好地尊重与基线方法相比,更好地尊重地面真相的注释。最后,我们证明切碎对于下游应用非常有用,在零弹药细粒的零件实例分割上的所有基准都超过了所有基准,并且当与学习标记形状区域的方法结合使用时,几乎没有发射细粒的语义分割。
translated by 谷歌翻译
Figure 1. Shapes from the ShapeNet [8] database, fit to a structured implicit template, and arranged by template parameters using t-SNE [52]. Similar shape classes, such as airplanes, cars, and chairs, naturally cluster by template parameters. 1
translated by 谷歌翻译
我们提出了神经引导的形状解析器(NGSP),一种方法,该方法学习如何将细粒度语义标签分配给3D形状的区域。 NGSP通过MAP推断解决了这个问题,在输入形状上建模了标签分配的后验概率,其具有学习的似然函数。为了使这次搜索易于进行,NGSP采用神经指南网络,了解近似后部。 NGSP通过使用引导网络的第一次采样提案找到高概率标签分配,然后在完全可能性下评估每个提案。我们评估NGSP从Partnet的制造3D形状的细粒度语义分割任务,其中形状被分解成对应于零件实例过分分割的区域。我们发现NGSP通过比较方法提供显着的性能改进,(i)使用区域对分组每点预测,(ii)使用区域作为自我监督信号或(iii)将标签分配给替代配方下的区域。此外,我们表明,即使具有有限的标记数据或作为形状区域经历人为腐败,NGSP即使具有有限的人为腐败,也会保持强劲的性能。最后,我们证明了NGSP可以直接应用于在线存储库中的CAD形状,并验证其效力与感知研究。
translated by 谷歌翻译
许多3D表示(例如,点云)是下面连续3D表面的离散样本。该过程不可避免地介绍了底层的3D形状上的采样变化。在学习3D表示中,应忽略应忽略变化,而应捕获基础3D形状的可转换知识。这成为现有代表学习范式的大挑战。本文在点云上自动编码。标准自动编码范例强制编码器捕获这种采样变体,因为解码器必须重建具有采样变化的原始点云。我们介绍了隐式AutoEncoder(IAE),这是一种简单而有效的方法,通过用隐式解码器替换点云解码器来解决这一挑战。隐式解码器输出与相同模型的不同点云采样之间共享的连续表示。在隐式表示下重建可以优先考虑编码器丢弃采样变体,引入更多空间以学习有用的功能。在一个简单的线性AutoEncoder下,理论上理论地证明这一索赔。此外,隐式解码器提供丰富的空间来为不同的任务设计合适的隐式表示。我们展示了IAE对3D对象和3D场景的各种自我监督学习任务的有用性。实验结果表明,IAE在每项任务中始终如一地优于最先进的。
translated by 谷歌翻译
在本文中,我们将3D点云的古典表示作为线性形状模型。我们的主要洞察力是利用深度学习,代表一种形状的集合,作为低维线性形状模型的仿射变换。每个线性模型的特征在于形状原型,低维形状基础和两个神经网络。网络以输入点云作为输入,并在线性基础中预测形状的坐标和最能近似输入的仿射变换。使用单一的重建损耗来学习线性模型和神经网络的结束。我们方法的主要优点是,与近期学习基于特征的复杂形状表示的许多深度方法相比,我们的模型是显式的,并且在3D空间中发生每个操作。结果,我们的线性形状模型可以很容易地可视化和注释,并且可以在视觉上了解故障情况。虽然我们的主要目标是引入紧凑且可解释的形状收集表示,但我们表明它导致最新的最先进结果对几次射击分割。
translated by 谷歌翻译
多年来,3D形状抽象引起了极大的兴趣。除了诸如网格和体素之类的低级表示外,研究人员还试图用基本的几何原始素来抽象的语义上抽象的复杂对象。最近的深度学习方法在很大程度上依赖于数据集,而一般性的一般性有限。此外,准确地将对象抽象为少数原始物仍然是一个挑战。在本文中,我们提出了一种新型的非参数贝叶斯统计方法来推断从点云中推断出由未知数的几何原始物组成的抽象。我们将点的生成模拟为从高斯超质锥模型(GSTM)的无限混合物采样的观测值。我们的方法将抽象作为聚类问题提出,其中:1)通过中国餐厅过程(CRP)将每个点分配给集群; 2)针对每个集群优化了原始表示形式,3)合并后制品合并以提供简洁的表示。我们在两个数据集上进行了广泛的实验。结果表明,我们的方法在准确性方面优于最先进的方法,并且可以推广到各种类型的对象。
translated by 谷歌翻译
无人监督的学习目睹了自然语言理解和最近的2D图像领域的巨大成功。如何利用无监督学习的3D点云分析的力量仍然是开放的。大多数现有方法只是简单地适应2D域中使用的技术到3D域,同时不完全利用3D数据的特殊性。在这项工作中,我们提出了一种对3D点云的无监督代表学习的点辨别学习方法,该方法专门为点云数据设计,可以学习本地和全局形状特征。我们通过对骨干网络产生的中间级别和全球层面特征进行新的点歧视损失来实现这一目标。该点歧视损失强制执行与属于相应局部形状区域的点,并且与随机采样的嘈杂点不一致。我们的方法简单,设计简单,通过添加额外的适配模块和用于骨干编码器的无监督培训的点一致性模块。培训后,可以在对下游任务的分类器或解码器的监督培训期间丢弃这两个模块。我们在各种设置中对3D对象分类,3D语义和部分分割进行了广泛的实验,实现了新的最先进的结果。我们还对我们的方法进行了详细的分析,目视证明我们所学到的无监督特征的重建本地形状与地面真理形状高度一致。
translated by 谷歌翻译
使用非均匀Rational B样条(NURBS)的边界表示(B-REP)是CAD中使用的事实标准,但它们在基于深度学习的方法中的实用性并未得到很好的研究。我们提出了一个不同的NURBS模块,将CAD模型的NURBS表示与深度学习方法集成。我们在数学上定义NURBS曲线或表面的衍生品相对于输入参数(控制点,权重和结向量)。这些衍生品用于定义用于执行“落后”评估的近似雅比尼亚,以培训深入学习模型。我们使用GPU加速算法实施了我们的NURBS模块,并与Pytorch集成了一个流行的深度学习框架。我们展示了我们的NURBS模块在执行CAD操作中的功效,例如曲线或表面拟合和表面偏移。此外,我们在深度学习中展示了无监督点云重建和强制分析约束的效用。这些例子表明,我们的模块对某些深度学习框架进行了更好的表现,并且可以与任何需要NURBS的任何深度学习框架直接集成。
translated by 谷歌翻译
深层隐式表面在建模通用形状方面表现出色,但并不总是捕获制造物体中存在的规律性,这是简单的几何原始词特别擅长。在本文中,我们提出了一个结合潜在和显式参数的表示,可以将其解码为一组彼此一致的深层隐式和几何形状。结果,我们可以有效地对制成物体共存的复杂形状和高度规则形状进行建模。这使我们能够以有效而精确的方式操纵3D形状的方法。
translated by 谷歌翻译
本文通过学习的基于零件的自相似性解决了无监督的零件感知点云产生的问题。我们的SPA-VAE可为任何给定物体提供一组潜在的典型候选形状,以及每种此类候选形状的一组刚体转换,以在组装的对象中为一个或多个位置。通过这种方式,可以有效地组合在表面上的嘈杂样品,以估计单腿原型。当原始数据中存在基于零件的自相似性时,以这种方式共享数据会赋予许多优势:建模准确性,适当的自相似生成输出,闭塞的精确填充和模型简约。 Spa-vae是使用各种贝叶斯方法的端到端训练的,该方法使用Gumbel-Softmax Trick进行共享零件分配,并提供各种新颖的损失,以提供适当的电感偏见。对塑料的定量和定性分析证明了SPA-VAE的优势。
translated by 谷歌翻译
点云的学习表示是3D计算机视觉中的重要任务,尤其是没有手动注释的监督。以前的方法通常会从自动编码器中获得共同的援助,以通过重建输入本身来建立自我判断。但是,现有的基于自我重建的自动编码器仅关注全球形状,而忽略本地和全球几何形状之间的层次结构背景,这是3D表示学习的重要监督。为了解决这个问题,我们提出了一个新颖的自我监督点云表示学习框架,称为3D遮挡自动编码器(3D-OAE)。我们的关键想法是随机遮住输入点云的某些局部补丁,并通过使用剩余的可见图来恢复遮挡的补丁,从而建立监督。具体而言,我们设计了一个编码器,用于学习可见的本地贴片的特征,并设计了一个用于利用这些功能预测遮挡贴片的解码器。与以前的方法相反,我们的3D-OAE可以去除大量的斑块,并仅使用少量可见斑块进行预测,这使我们能够显着加速训练并产生非平凡的自我探索性能。训练有素的编码器可以进一步转移到各种下游任务。我们证明了我们在广泛使用基准下的不同判别和生成应用中的最先进方法的表现。
translated by 谷歌翻译
最近3D点云学习一直是计算机视觉和自主驾驶中的热门话题。由于事实上,难以手动注释一个定性的大型3D点云数据集,无监督的域适应(UDA)在3D点云学习中流行,旨在将学习知识从标记的源域转移到未标记的目标领域。然而,具有简单学习模型引起的域转移引起的泛化和重建误差是不可避免的,这基本上阻碍了模型的学习良好表示的能力。为了解决这些问题,我们提出了一个结束到底自组合网络(SEN),用于3D云域适应任务。一般来说,我们的森林度假前的含义教师和半监督学习的优势,并引入了软的分类损失和一致性损失,旨在实现一致的泛化和准确的重建。在森中,学生网络以具有监督的学习和自我监督学习的协作方式,教师网络进行时间一致性,以学习有用的表示,并确保点云重建的质量。在几个3D点云UDA基准上的广泛实验表明,我们的SEN在分类和分段任务中表现出最先进的方法。此外,进一步的分析表明,我们的森也实现了更好的重建结果。
translated by 谷歌翻译
大规模数据集对于学习良好的特性至关重要,以便在3D形状理解中,只有几个数据集可以满足深入学习培训。其中一个主要原因是,用于使用多边形或涂鸦注释每点语义标签的当前工具是乏味的,效率低下。为了促进3D形状中的分段注释,我们提出了一个有效的注释工具,名为3D形状的ISEG。它可以获得最小的人类点击(<10)的满足细分结果。在我们的观察下,大多数物体可以被视为有限原始形状的组成,我们在我们的建立原始组合的形状数据上培训ISEG3D模型,以以自我监督的方式学习几何先前知识。给定人类交互,所学的知识可用于在任意形状上分段部分,其中正点击帮助将基元与语义部件相关联,负击可以避免过分分割。此外,我们还提供了一个在线人体环路的微调模块,使模型能够使用较少点击执行更好的分段。实验证明ISEG3D对Partnet形状分割的有效性。数据和代码将公开可用。
translated by 谷歌翻译
反向工程从其他表示形式进行的CAD形状是许多下游应用程序的重要几何处理步骤。在这项工作中,我们介绍了一种新型的神经网络体系结构,以解决这项具有挑战性的任务,并使用可编辑,受约束的棱镜CAD模型近似平滑的签名距离函数。在训练过程中,我们的方法通过将形状分解为一系列2D轮廓图像和1D包膜函数来重建体素空间中的输入几何形状。然后可以以不同的方式重新组合这些,以允许定义几何损失函数。在推断期间,我们通过首先搜索2D约束草图的数据库来获取CAD数据,以找到近似配置文件图像的曲线,然后将它们挤出并使用布尔操作来构建最终的CAD模型。我们的方法比其他方法更接近目标形状,并输出与现有CAD软件兼容的高度可编辑的约束参数草图。
translated by 谷歌翻译
Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).
translated by 谷歌翻译