随机块模型(SBM)是一个随机图模型,其连接不同的顶点组不同。它被广泛用作研究聚类和社区检测的规范模型,并提供了肥沃的基础来研究组合统计和更普遍的数据科学中出现的信息理论和计算权衡。该专着调查了最近在SBM中建立社区检测的基本限制的最新发展,无论是在信息理论和计算方案方面,以及各种恢复要求,例如精确,部分和弱恢复。讨论的主要结果是在Chernoff-Hellinger阈值中进行精确恢复的相转换,Kesten-Stigum阈值弱恢复的相变,最佳的SNR - 单位信息折衷的部分恢复以及信息理论和信息理论之间的差距计算阈值。该专着给出了在寻求限制时开发的主要算法的原则推导,特别是通过绘制绘制,半定义编程,(线性化)信念传播,经典/非背带频谱和图形供电。还讨论了其他块模型的扩展,例如几何模型和一些开放问题。
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译
在本文中,我们介绍了超模块化$ \ mf $ -Diverences,并为它们提供了三个应用程序:(i)我们在基于超模型$ \ MF $ - 基于独立随机变量的尾部引入了Sanov的上限。分歧并表明我们的广义萨诺夫(Sanov)严格改善了普通的界限,(ii)我们考虑了有损耗的压缩问题,该问题研究了给定失真和代码长度的一组可实现的速率。我们使用互助$ \ mf $ - 信息扩展了利率 - 延伸函数,并使用超模块化$ \ mf $ -Diverences在有限的区块长度方面提供了新的,严格的更好的界限,并且(iii)我们提供了连接具有有限输入/输出共同$ \ mf $的算法的概括误差和广义率延伸问题。该连接使我们能够使用速率函数的下限来限制学习算法的概括误差。我们的界限是基于对利率延伸函数的新下限,该函数(对于某些示例)严格改善了以前最著名的界限。此外,使用超模块化$ \ mf $ -Divergences来减少问题的尺寸并获得单字母界限。
translated by 谷歌翻译
我们考虑使用随机球形代码的高维信号$ x $的有损压缩表示之间的分布连接,并在添加白色高斯噪声(AWGN)下的$ X $观察$ x $。我们展示了比特率 - $ R $压缩版的Wassersein距离$ x $及其在AWGN-噪声比率下的AWGN噪声比率下的观察2 ^ {2R} -1 $ 2 ^ {2r} -1 $中的下线性。我们利用此事实基于AWGN损坏的$ x $的AWGN损坏版本的估算者的风险连接到与其比特率 - $ r $量化版本相同的估算器所获得的风险。我们通过在压缩约束下导出推导问题的各种新结果来展示这种联系的有用性,包括Minimax估计,稀疏回归,压缩感和远程源编码中的线性估计的普遍性。
translated by 谷歌翻译
我们研究了广义熵的连续性属性作为潜在的概率分布的函数,用动作空间和损失函数定义,并使用此属性来回答统计学习理论中的基本问题:各种学习方法的过度风险分析。我们首先在几种常用的F分歧,Wassersein距离的熵差异导出了两个分布的熵差,这取决于动作空间的距离和损失函数,以及由熵产生的Bregman发散,这也诱导了两个分布之间的欧几里德距离方面的界限。对于每个一般结果的讨论给出了示例,使用现有的熵差界进行比较,并且基于新结果导出新的相互信息上限。然后,我们将熵差异界限应用于统计学习理论。结果表明,两种流行的学习范式,频繁学习和贝叶斯学习中的过度风险都可以用不同形式的广义熵的连续性研究。然后将分析扩展到广义条件熵的连续性。扩展为贝叶斯决策提供了不匹配的分布来提供性能范围。它也会导致第三个划分的学习范式的过度风险范围,其中决策规则是在经验分布的预定分布家族的预测下进行最佳设计。因此,我们通过广义熵的连续性建立了统计学习三大范式的过度风险分析的统一方法。
translated by 谷歌翻译
我们基于电子价值开发假设检测理论,这是一种与p值不同的证据,允许毫不费力地结合来自常见场景中的几项研究的结果,其中决定执行新研究可能取决于以前的结果。基于E-V值的测试是安全的,即它们在此类可选的延续下保留I型错误保证。我们将增长速率最优性(GRO)定义为可选的连续上下文中的电力模拟,并且我们展示了如何构建GRO E-VARIABLE,以便为复合空缺和替代,强调模型的常规测试问题,并强调具有滋扰参数的模型。 GRO E值采取具有特殊前瞻的贝叶斯因子的形式。我们使用几种经典示例说明了该理论,包括一个样本安全T检验(其中右哈尔前方的右手前锋为GE)和2x2差价表(其中GRE之前与标准前沿不同)。分享渔业,奈曼和杰弗里斯·贝叶斯解释,电子价值观和相应的测试可以提供所有三所学校的追随者可接受的方法。
translated by 谷歌翻译
本文在对数损耗保真度下调查了多终端源编码问题,这不一定导致添加性失真度量。该问题是通过信息瓶颈方法的扩展到多源场景的激励,其中多个编码器必须构建其来源的协同速率限制描述,以便最大化关于其他未观察的(隐藏的)源的信息。更确切地说,我们研究所谓的基本信息 - 理论极限:(i)双向协同信息瓶颈(TW-CIB)和(ii)协同分布式信息瓶颈(CDIB)问题。 TW-CIB问题由两个遥远的编码器分开观察边缘(依赖)组件$ X_1 $和$ X_2 $,并且可以通过有关隐藏变量的信息提取信息的目的进行有限信息的多个交换机(Y_1,Y_2)$ ,它可以任意依赖于$(X_1,X_2)$。另一方面,在CDIB中,有两个合作的编码器,分别观察$ x_1 $和$ x_2 $和第三个节点,它可以侦听两个编码器之间的交换,以便获取有关隐藏变量$ y $的信息。根据标准化(每个样本)多字母互信息度量(对数损耗保真度)来测量的相关性(图 - 优点),并且通过限制描述的复杂性来产生一个有趣的权衡,从而测量编码器和解码器之间的交换所需的费率。内部和外界与这些问题的复杂性相关区域的衍生自特征从哪个感兴趣的案例的特征在于。我们所产生的理论复杂性相关区域最终针对二进制对称和高斯统计模型进行评估。
translated by 谷歌翻译
我们正式化并研究通过嵌入设计凸替代损失函数的自然方法,例如分类,排名或结构化预测等问题。在这种方法中,一个人将每一个有限的预测(例如排名)嵌入$ r^d $中的一个点,将原始损失值分配给这些要点,并以某种方式“凸出”损失以获得替代物。我们在这种方法和多面体(分段线性凸)的替代损失之间建立了牢固的联系:每个离散损失都被一些多面体损失嵌入,并且每个多面体损失都嵌入了一些离散的损失。此外,嵌入会产生一致的链接功能以及线性替代遗憾界限。正如我们用几个示例所说明的那样,我们的结果具有建设性。特别是,我们的框架为文献中各种多面体替代物以及不一致的替代物提供了简洁的证据或不一致的证据,它进一步揭示了这些代理人一致的离散损失。我们继续展示嵌入的其他结构,例如嵌入和匹配贝叶斯风险的等效性以及各种非算术概念的等效性。使用这些结果,我们确定与多面体替代物一起工作时,间接启发是一致性的必要条件也足够了。
translated by 谷歌翻译
通过定义和上限,通过定义和上限,分析了贝叶斯学习的最佳成绩性能,通过限定了最小的过度风险(MER):通过从数据学习和最低预期损失可以实现的最低预期损失之间的差距认识到了。 MER的定义提供了一种原则状的方式来定义贝叶斯学习中的不同概念的不确定性,包括炼膜不确定性和最小的认知不确定性。提出了用于衍生MER的上限的两种方法。第一方法,通常适用于具有参数生成模型的贝叶斯学习,通过在模型参数之间的条件互信息和所观察到的数据预测的量之间的条件相互信息。它允许我们量化MER衰减随着更多数据可用而衰减为零的速率。在可实现的模型中,该方法还将MER与生成函数类的丰富性涉及,特别是二进制分类中的VC维度。具有参数预测模型的第二种方法,特别适用于贝叶斯学习,将MER与来自数据的模型参数的最小估计误差相关联。它明确地说明了模型参数估计中的不确定性如何转化为MER和最终预测不确定性。我们还将MER的定义和分析扩展到具有多个模型系列的设置以及使用非参数模型的设置。沿着讨论,我们在贝叶斯学习中的MER与频繁学习的过度风险之间建立了一些比较。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译
在这项工作中,我们调查了Steinke和Zakynthinou(2020)的“条件互信息”(CMI)框架的表现力,以及使用它来提供统一框架,用于在可实现的环境中证明泛化界限。我们首先证明可以使用该框架来表达任何用于从一类界限VC维度输出假设的任何学习算法的非琐碎(但是次优)界限。我们证明了CMI框架在用于学习半个空间的预期风险上产生最佳限制。该结果是我们的一般结果的应用,显示稳定的压缩方案Bousquet al。 (2020)尺寸$ k $有统一有限的命令$ o(k)$。我们进一步表明,适当学习VC类的固有限制与恒定的CMI存在适当的学习者的存在,并且它意味着对Steinke和Zakynthinou(2020)的开放问题的负面分辨率。我们进一步研究了价值最低限度(ERMS)的CMI的级别$ H $,并表明,如果才能使用有界CMI输出所有一致的分类器(版本空间),只有在$ H $具有有界的星号(Hanneke和杨(2015)))。此外,我们证明了一般性的减少,表明“休假”分析通过CMI框架表示。作为推论,我们研究了Haussler等人提出的一包图算法的CMI。 (1994)。更一般地说,我们表明CMI框架是通用的,因为对于每一项一致的算法和数据分布,当且仅当其评估的CMI具有样品的载位增长时,预期的风险就会消失。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
我们派生并分析了一种用于估计有限簇树中的所有分裂的通用,递归算法以及相应的群集。我们进一步研究了从内核密度估计器接收级别设置估计时该通用聚类算法的统计特性。特别是,我们推出了有限的样本保证,一致性,收敛率以及用于选择内核带宽的自适应数据驱动策略。对于这些结果,我们不需要与H \“{o}连续性等密度的连续性假设,而是仅需要非参数性质的直观几何假设。
translated by 谷歌翻译
我们研究了有限空间中值的静止随机过程的最佳运输。为了反映潜在流程的实向性,我们限制了对固定联轴器的关注,也称为联系。由此产生的最佳连接问题捕获感兴趣过程的长期平均行为的差异。我们介绍了最优联接的估算和最佳的加入成本,我们建立了温和条件下估算器的一致性。此外,在更强的混合假设下,我们为估计的最佳连接成本建立有限样本误差速率,其延伸了IID案件中的最佳已知结果。最后,我们将一致性和速率分析扩展到最佳加入问题的熵惩罚版本。
translated by 谷歌翻译
Wasserstein的分布在强大的优化方面已成为强大估计的有力框架,享受良好的样本外部性能保证,良好的正则化效果以及计算上可易处理的双重重新纠正。在这样的框架中,通过将最接近经验分布的所有概率分布中最接近的所有概率分布中最小化的最差预期损失来最大程度地减少估计量。在本文中,我们提出了一个在噪声线性测量中估算未知参数的Wasserstein分布稳定的M估计框架,我们专注于分析此类估计器的平方误差性能的重要且具有挑战性的任务。我们的研究是在现代的高维比例状态下进行的,在该状态下,环境维度和样品数量都以相对的速度进行编码,该速率以编码问题的下/过度参数化的比例。在各向同性高斯特征假设下,我们表明可以恢复平方误差作为凸 - 串联优化问题的解,令人惊讶的是,它在最多四个标量变量中都涉及。据我们所知,这是在Wasserstein分布强劲的M估计背景下研究此问题的第一项工作。
translated by 谷歌翻译
机器学习通常以经典的概率理论为前提,这意味着聚集是基于期望的。现在有多种原因可以激励人们将经典概率理论作为机器学习的数学基础。我们系统地检查了一系列强大而丰富的此类替代品,即各种称为光谱风险度量,Choquet积分或Lorentz规范。我们提出了一系列的表征结果,并演示了使这个光谱家族如此特别的原因。在此过程中,我们证明了所有连贯的风险度量的自然分层,从它们通过利用重新安排不变性Banach空间理论的结果来诱导的上层概率。我们凭经验证明了这种新的不确定性方法如何有助于解决实用的机器学习问题。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
本文研究了以$ \ mathbb {r}^d $使用球形协方差矩阵$ \ sigma^2 \ sigma^2 \ mathbf {i} $的$ k $学习中心的样本复杂性。特别是,我们对以下问题感兴趣:最大噪声水平$ \ sigma^2 $是什么,对此样品复杂性基本与从标记的测量值估算中心时相同?为此,我们将注意力限制为问题的贝叶斯公式,其中中心均匀分布在球体上$ \ sqrt {d} \ Mathcal {s}^{d-1} $。我们的主要结果表征了确切的噪声阈值$ \ sigma^2 $,而GMM学习问题(在大系统中限制$ d,k \ to \ infty $)就像从标记的观测值中学习一样容易更加困难。阈值发生在$ \ frac {\ log k} {d} = \ frac12 \ log \ left(1+ \ frac {1} {1} {\ sigma^2} \ right)$,这是添加性白色高斯的能力噪声(AWGN)频道。将$ K $中心的集合作为代码,可以将此噪声阈值解释为最大的噪声水平,AWGN通道上代码的错误概率很小。关于GMM学习问题的先前工作已将中心之间的最小距离确定为确定学习相应GMM的统计难度的关键参数。虽然我们的结果仅是针对中心均匀分布在球体上的GMM的,但他们暗示,也许这是与中心星座相关的解码错误概率作为频道代码确定学习相应GMM的统计难度,而不是仅仅最小距离。
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
给定$ n $数据点$ \ mathbb {r}^d $中的云,请考虑$ \ mathbb {r}^d $的$ m $ dimensional子空间预计点。当$ n,d $增长时,这一概率分布的集合如何?我们在零模型下考虑了这个问题。标准高斯矢量,重点是渐近方案,其中$ n,d \ to \ infty $,$ n/d \ to \ alpha \ in(0,\ infty)$,而$ m $是固定的。用$ \ mathscr {f} _ {m,\ alpha} $表示$ \ mathbb {r}^m $中的一组概率分布,在此限制中以低维度为单位,我们在此限制中建立了新的内部和外部界限$ \ mathscr {f} _ {m,\ alpha} $。特别是,我们将$ \ mathscr {f} _ {m,\ alpha} $的Wasserstein Radius表征为对数因素,并以$ M = 1 $确切确定它。我们还通过kullback-leibler差异和r \'{e} NYI信息维度证明了尖锐的界限。上一个问题已应用于无监督的学习方法,例如投影追求和独立的组件分析。我们介绍了与监督学习相关的相同问题的版本,并证明了尖锐的沃斯坦斯坦半径绑定。作为一个应用程序,我们在具有$ M $隐藏神经元的两层神经网络的插值阈值上建立了上限。
translated by 谷歌翻译