由于市场的不确定性,预测文本信息的股票价格是一个具有挑战性的任务,并且难以理解机器的观点。以前的研究主要关注基于单一新闻的情绪提取。但是,金融市场上的股票可以高度相关,有关一股股票的一个新闻可以迅速影响其他股票的价格。要考虑到这一效果,我们提出了一种新的股票运动预测框架:用于库存预测(MGRN)的多图复发网络。该架构允许将文本情绪与其他财务数据中提取的财务新闻和多个关系信息相结合。通过精度测试和STOXX Europe 600指数中的股票的交易仿真,我们展示了我们模型的更好的性能而不是其他基准。
translated by 谷歌翻译
保持个人特征和复杂的关系,广泛利用和研究了图表数据。通过更新和聚合节点的表示,能够捕获结构信息,图形神经网络(GNN)模型正在获得普及。在财务背景下,该图是基于实际数据构建的,这导致复杂的图形结构,因此需要复杂的方法。在这项工作中,我们在最近的财务环境中对GNN模型进行了全面的审查。我们首先将普通使用的财务图分类并总结每个节点的功能处理步骤。然后,我们总结了每个地图类型的GNN方法,每个区域的应用,并提出一些潜在的研究领域。
translated by 谷歌翻译
双类型的异构图形应用于许多真实情景。然而,以前的异构图形学习研究通常忽略这种异构图中的双键入实体之间的复杂相互作用。为了解决这个问题,在本文中,我们提出了一种新的双重分层关注网络(DHAN),以了解与类内和级别的分层关注网络的双键入异构图中的综合节点表示。具体地,课堂上的注意力旨在从相同类型的邻居中学习节点表示,而级别的关注能够从其不同类型的邻居聚合节点表示。因此,双重关注操作使DHAN不仅能够充分地利用节点帧内邻近信息,而且可以在双键入的异构图中提供帧间相邻信息。关于针对最先进的各种任务的实验结果充分证实了DHAN在学习节点的学习节点综合陈述的能力
translated by 谷歌翻译
由于它存在的挑战以及甚至进行预测准确性或预测的潜在奖励,财务预测是机器学习研究的一个重要而活跃的机器学习研究领域。传统上,财务预测严重依赖于结构化财务报表的定量指标和指标。盈利会议呼叫数据(包括文本和音频)是使用深度盈利和相关方法的各种预测任务的重要非结构化数据的重要来源。但是,当前基于深度学习的方法在他们处理数字数据的方式有限;数字通常被视为普通文本令牌,而不利用其底层数字结构。本文介绍了一个以数字为导向的分层变压器模型,以预测库存退货,以及使用多模态对齐收益的财务风险通过利用不同类别的数字(货币,时间,百分比等)及其幅度来调用数据。我们使用现实世界公共可公共数据集介绍了对几个最先进的基线的NumHTML的全面评估结果。结果表明,NumHTML在各种评估指标中显着优于当前最先进的指标,并且它有可能在实际交易环境中提供重大的财务收益。
translated by 谷歌翻译
股票价格随着典型的趋势波动而不是纯粹随机散步。传统上,未来库存流动的预测是基于历史贸易记录。如今,随着社交媒体的发展,市场上的许多积极参与者选择宣传他们的策略,这为窗户提供了一个窗口,通过提取社交媒体背后的语义来瞥见整个市场对未来运动的态度。但是,社交媒体包含相互冲突的信息,无法完全取代历史记录。在这项工作中,我们提出了一种多模态注意网络,以减少冲突并集成语义和数字特征,以全面预测未来库存运动。具体而言,我们首先从社交媒体提取语义信息,并根据海报的身份和公众声誉估算他们的信誉。然后我们将语义从在线帖子和数字特征融入历史记录,以进行交易策略。实验结果表明,我们的方法在预测准确性(61.20 \%)和交易利润(9.13 \%)中,我们的方法优于先前的方法。它表明,我们的方法提高了库存运动预测的性能,并向未来的多种式融合朝向库存预测的研究。
translated by 谷歌翻译
良好的研究努力致力于利用股票预测中的深度神经网络。虽然远程依赖性和混沌属性仍然是在预测未来价格趋势之前降低最先进的深度学习模型的表现。在这项研究中,我们提出了一个新的框架来解决这两个问题。具体地,在将时间序列转换为复杂网络方面,我们将市场价格系列转换为图形。然后,从映射的图表中提取参考时间点和节点权重之间的关联的结构信息以解决关于远程依赖性和混沌属性的问题。我们采取图形嵌入式以表示时间点之间的关联作为预测模型输入。节点重量被用作先验知识,以增强时间关注的学习。我们拟议的框架的有效性通过现实世界股票数据验证,我们的方法在几个最先进的基准中获得了最佳性能。此外,在进行的交易模拟中,我们的框架进一步获得了最高的累积利润。我们的结果补充了复杂网络方法在金融领域的现有应用,并为金融市场中决策支持的投资应用提供了富有识别的影响。
translated by 谷歌翻译
现有的出版物表明,限制票据数据可用于预测股票市场的短期波动性。由于股票不独立,因此一股股票的变化也会影响其他相关股票。在本文中,我们有兴趣以基于限制票据数据和关系数据的多变量方法预测短期实现波动性。为实现这一目标,我们引入了绘图变压器网络以实现波动预测。该模型允许组合限制票据特征和与不同来源的无限数量的时间和横截面关系。通过基于S&P 500指数的大约500股股票的实验,我们为我们的模型找到了比其他基准更好的表现。
translated by 谷歌翻译
我们开发一个从社交媒体文本数据中提取情绪的工具。我们的方法有三个主要优势。首先,它适用于财务背景;其次,它包含社交媒体数据的关键方面,例如非标准短语,表情符号和表情符号;第三,它通过顺序地学习潜在的表示来操作,该潜在表示包括单词顺序,单词使用和本地上下文等功能。此工具以及用户指南可供选择:https://github.com/dvamossy/mtract。使用大学,我们探讨了社会媒体和资产价格表达的投资者情绪之间的关系。我们记录了一些有趣的见解。首先,我们确认了一些受控实验室实验的调查结果,将投资者情绪与资产价格变动相关联。其次,我们表明投资者的情绪是预测日常价格变动的预测。当波动率或短暂的兴趣更高,当机构所有权或流动性降低时,这些影响更大。第三,在IPO之前增加了投资者的热情,促进了大量的第一天返回,并长期不足的IPO股票。为了证实我们的结果,我们提供了许多稳健性检查,包括使用替代情感模型。我们的研究结果强化了情绪和市场动态密切相关的直觉,并突出了在评估股票的短期价值时考虑投资者情绪的重要性。
translated by 谷歌翻译
假新闻,虚假或误导性信息作为新闻,对社会的许多方面产生了重大影响,例如在政治或医疗域名。由于假新闻的欺骗性,仅将自然语言处理(NLP)技术应用于新闻内容不足。多级社会上下文信息(新闻出版商和社交媒体的参与者)和用户参与的时间信息是假新闻检测中的重要信息。然而,正确使用此信息,介绍了三个慢性困难:1)多级社会上下文信息很难在没有信息丢失的情况下使用,2)难以使用时间信息以及多级社会上下文信息,3 )具有多级社会背景和时间信息的新闻表示难以以端到端的方式学习。为了克服所有三个困难,我们提出了一种新颖的假新闻检测框架,杂扫描。我们使用元路径在不损失的情况下提取有意义的多级社会上下文信息。 COMA-PATO,建议连接两个节点类型的复合关系,以捕获异构图中的语义。然后,我们提出了元路径实例编码和聚合方法,以捕获用户参与的时间信息,并生成新闻代表端到端。根据我们的实验,杂扫不断的性能改善了最先进的假新闻检测方法。
translated by 谷歌翻译
识别新闻媒体的政治观点已成为政治评论的快速增长和日益极化的政治意识形态的重要任务。以前的方法专注于文本内容,留出富裕的社会和政治背景,这在论证挖掘过程中至关重要。为了解决这一限制,我们提出了一种政治透视检测方法,包括外部域知识。具体而言,我们构建一个政治知识图形,以作为特定于域的外部知识。然后我们利用异质信息网络来代表新闻文件,共同模仿新闻文本和外部知识。最后,我们采用关系图神经网络,并作为图形级分类进行政治视角检测。广泛的实验表明,我们的方法始终如一地实现了两个现实世界的透视检测基准的最佳性能。消融研究进一步承担了外部知识的必要性以及我们基于图形的方法的有效性。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
多变量时间序列预测,分析历史时序序列以预测未来趋势,可以有效地帮助决策。 MTS中变量之间的复杂关系,包括静态,动态,可预测和潜在的关系,使得可以挖掘MTS的更多功能。建模复杂关系不仅是表征潜在依赖性的必要条件以及建模时间依赖性,而且在MTS预测任务中也带来了极大的挑战。然而,现有方法主要关注模拟MTS变量之间的某些关系。在本文中,我们提出了一种新的端到端深度学习模型,通过异构图形神经网络(MTHETGNN)称为多变量时间序列预测。为了表征变量之间的复杂关系,在MTHETGNN中设计了一个关系嵌入模块,其中每个变量被视为图形节点,并且每种类型的边缘表示特定的静态或动态关系。同时,引入了时间嵌入模块的时间序列特征提取,其中涉及具有不同感知尺度的卷积神经网络(CNN)滤波器。最后,采用异质图形嵌入模块来处理由两个模块产生的复杂结构信息。来自现实世界的三个基准数据集用于评估所提出的MTHETGNN。综合实验表明,MTHETGNN在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
在谈话中的情感认可(ERC)近年来引起了很多关注,以实现广泛应用的必要性。现有的ERC方法主要是单独模拟自我和讲话者上下文,在缺乏它们之间缺乏足够的互动的主要问题。在本文中,我们提出了一种用于ERC(S + Page)的新型扬声器和位置感知图形神经网络模型,其中包含三个阶段,以结合变压器和关系图卷积网络(R-GCN)的优势以获得更好的上下文建模。首先,提出了一种双流的会话变压器以提取每个话语的粗略自我和扬声器上下文特征。然后,构造扬声器和位置感知会话图,并且我们提出了一种称为PAG的增强型R-GCN模型,以优化由相对位置编码引导的粗略特征。最后,从前两个阶段的两个特征都被输入到条件随机场层中以模拟情绪转移。
translated by 谷歌翻译
虽然知识图表包含各种实体的丰富语义知识和它们之间的关系信息,但时间知识图(TKG)进一步表明实体随时间的相互作用。为了研究如何更好地模范TKG,自动时间知识图完成(TKGC)已经获得了很大的兴趣。最近的TKGC方法旨在整合先进的深度学习技术,例如注意机制和变压器,提高模型性能。然而,我们发现与采用各种复杂模块相比,更有利的是更好地利用沿时间轴的全部时间信息。在本文中,我们为TKGC提出了一个简单但强大的图形编码器Targcn。 targcn是参数效率,它广泛利用了整个时间上下文的信息。我们在三个基准数据集执行实验。与最先进的模型相比,我们的模型可以在GDELT数据集中实现42%以上的相对改善。同时,它优于ICEWS05-15数据集的最强大的基线,参数减少约为18.5%。
translated by 谷歌翻译
近年来,异构图形神经网络(HGNNS)一直在开花,但每个工作所使用的独特数据处理和评估设置会让他们的进步完全了解。在这项工作中,我们通过使用其官方代码,数据集,设置和超参数来展示12个最近的HGNN的系统再现,揭示了关于HGNN的进展的令人惊讶的结果。我们发现,由于设置不当,简单的均匀GNN,例如GCN和GAT在很大程度上低估了。具有适当输入的GAT通常可以匹配或优于各种场景的所有现有HGNN。为了促进稳健和可重复的HGNN研究,我们构建异构图形基准(HGB),由具有三个任务的11个不同数据集组成。 HGB标准化异构图数据分割,特征处理和性能评估的过程。最后,我们介绍了一个简单但非常强大的基线简单 - HGN - 这显着优于HGB上以前的所有模型 - 以加速未来HGNN的进步。
translated by 谷歌翻译
文档级关系提取(DRE)旨在识别两个实体之间的关系。实体可以对应于超越句子边界的多个提升。以前很少有研究已经调查了提及集成,这可能是有问题的,因为库鲁弗提到对特定关系没有同样有贡献。此外,事先努力主要关注实体级的推理,而不是捕获实体对之间的全局相互作用。在本文中,我们提出了两种新颖的技术,上下文指导的集成和交互推理(CGM2IR),以改善DRE。而不是简单地应用平均池,而是利用上下文来指导在加权和方式中的经验提升的集成。另外,对实体对图的相互作用推理在实体对图上执行迭代算法,以模拟关系的相互依赖性。我们在三个广泛使用的基准数据集中评估我们的CGM2IR模型,即Docred,CDR和GDA。实验结果表明,我们的模型优于以前的最先进的模型。
translated by 谷歌翻译
通讯和社交网络可以从分析师和公众提供公司提供的产品和/或服务的角度来反映市场和特定股票的意见。因此,这些文本的情感分析可以提供有用的信息,以帮助投资者在市场上进行贸易。在本文中,建议通过预测-1和+1之间的范围内的分数(数据类型Rime)来确定与公司和股票相关的情绪。具体而言,我们精细调整了罗伯塔模型来处理头条和微博,并将其与其他变压器层组合,以处理与情绪词典的句子分析,以改善情绪分析。我们在Semeval-2017任务5发布的财务数据上进行了评估,我们的命题优于Semeval-2017任务5和强基线的最佳系统。实际上,与财务和一般情绪词典的上下文句子分析的组合为我们的模型提供了有用的信息,并允许它产生更可靠的情感分数。
translated by 谷歌翻译
在本文中,我们研究了中途公司,即在市场资本化少于100亿美元的公开交易公司。在30年内使用美国中载公司的大型数据集,我们期望通过中期预测默认的概率术语结构,了解哪些数据源(即基本,市场或定价数据)对违约风险贡献最多。然而,现有方法通常要求来自不同时间段的数据首先聚合并转变为横截面特征,我们将问题框架作为多标签时间级分类问题。我们适应变压器模型,从自然语言处理领域发出的最先进的深度学习模型,以信用风险建模设置。我们还使用注意热图解释这些模型的预测。为了进一步优化模型,我们为多标签分类和新型多通道架构提供了一种自定义损耗功能,具有差异训练,使模型能够有效地使用所有输入数据。我们的结果表明,拟议的深度学习架构的卓越性能,导致传统模型的AUC(接收器运行特征曲线下的区域)提高了13%。我们还展示了如何使用特定于这些模型的福利方法生成不同数据源和时间关系的重要性排名。
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译
许多真实世界图(网络)是具有不同类型的节点和边缘的异构。异构图嵌入,旨在学习异构图的低维节点表示,对于各种下游应用至关重要。已经提出了许多基于元路径的嵌入方法来学习近年来异构图的语义信息。然而,在学习异构图形嵌入时,大多数现有技术都在图形结构信息中忽略了图形结构信息。本文提出了一种新颖的结构意识异构图形神经网络(SHGNN),以解决上述限制。详细地,我们首先利用特征传播模块来捕获元路径中中间节点的本地结构信息。接下来,我们使用树关注聚合器将图形结构信息结合到元路径上的聚合模块中。最后,我们利用了元路径聚合器熔断来自不同元路径的聚合的信息。我们对节点分类和聚类任务进行了实验,并在基准数据集中实现了最先进的结果,该数据集显示了我们所提出的方法的有效性。
translated by 谷歌翻译