This paper introduces a novel algorithm, the Perturbed Proximal Preconditioned SPIDER algorithm (3P-SPIDER), designed to solve finite sum non-convex composite optimization. It is a stochastic Variable Metric Forward-Backward algorithm, which allows approximate preconditioned forward operator and uses a variable metric proximity operator as the backward operator; it also proposes a mini-batch strategy with variance reduction to address the finite sum setting. We show that 3P-SPIDER extends some Stochastic preconditioned Gradient Descent-based algorithms and some Incremental Expectation Maximization algorithms to composite optimization and to the case the forward operator can not be computed in closed form. We also provide an explicit control of convergence in expectation of 3P-SPIDER, and study its complexity in order to satisfy the epsilon-approximate stationary condition. Our results are the first to combine the composite non-convex optimization setting, a variance reduction technique to tackle the finite sum setting by using a minibatch strategy and, to allow deterministic or random approximations of the preconditioned forward operator. Finally, through an application to inference in a logistic regression model with random effects, we numerically compare 3P-SPIDER to other stochastic forward-backward algorithms and discuss the role of some design parameters of 3P-SPIDER.
translated by 谷歌翻译
期望最大化(EM)算法是潜在变量模型推断的默认算法。与任何其他机器学习领域一样,潜在变量模型到非常大的数据集的应用使得使用高级并行和分布式架构。本文介绍了FEDEM,它是EM算法到联合学习背景的第一个扩展。 FEDEM是一种新的通信高效方法,其处理本地设备的部分参与,并且对数据集的异构分布具有稳健。为了缓解通信瓶颈,FedEM压缩适当定义的完整数据足够的统计数据。我们还开发并分析了FEDEM的延伸,以进一步纳入方差减少方案。在所有情况下,我们都会导出有限时间的复杂性范围,以便平滑非凸起问题。提出了数值结果以支持我们的理论发现,以及对生物多样性监测的联合缺失值估算的应用。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
We consider the constrained sampling problem where the goal is to sample from a distribution $\pi(x)\propto e^{-f(x)}$ and $x$ is constrained on a convex body $\mathcal{C}\subset \mathbb{R}^d$. Motivated by penalty methods from optimization, we propose penalized Langevin Dynamics (PLD) and penalized Hamiltonian Monte Carlo (PHMC) that convert the constrained sampling problem into an unconstrained one by introducing a penalty function for constraint violations. When $f$ is smooth and the gradient is available, we show $\tilde{\mathcal{O}}(d/\varepsilon^{10})$ iteration complexity for PLD to sample the target up to an $\varepsilon$-error where the error is measured in terms of the total variation distance and $\tilde{\mathcal{O}}(\cdot)$ hides some logarithmic factors. For PHMC, we improve this result to $\tilde{\mathcal{O}}(\sqrt{d}/\varepsilon^{7})$ when the Hessian of $f$ is Lipschitz and the boundary of $\mathcal{C}$ is sufficiently smooth. To our knowledge, these are the first convergence rate results for Hamiltonian Monte Carlo methods in the constrained sampling setting that can handle non-convex $f$ and can provide guarantees with the best dimension dependency among existing methods with deterministic gradients. We then consider the setting where unbiased stochastic gradients are available. We propose PSGLD and PSGHMC that can handle stochastic gradients without Metropolis-Hasting correction steps. When $f$ is strongly convex and smooth, we obtain an iteration complexity of $\tilde{\mathcal{O}}(d/\varepsilon^{18})$ and $\tilde{\mathcal{O}}(d\sqrt{d}/\varepsilon^{39})$ respectively in the 2-Wasserstein distance. For the more general case, when $f$ is smooth and non-convex, we also provide finite-time performance bounds and iteration complexity results. Finally, we test our algorithms on Bayesian LASSO regression and Bayesian constrained deep learning problems.
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译
用于解决无约束光滑游戏的两个最突出的算法是经典随机梯度下降 - 上升(SGDA)和最近引入的随机共识优化(SCO)[Mescheder等,2017]。已知SGDA可以收敛到特定类别的游戏的静止点,但是当前的收敛分析需要有界方差假设。 SCO用于解决大规模对抗问题,但其收敛保证仅限于其确定性变体。在这项工作中,我们介绍了预期的共同胁迫条件,解释了它的好处,并在这种情况下提供了SGDA和SCO的第一次迭代收敛保证,以解决可能是非单调的一类随机变分不等式问题。我们将两种方法的线性会聚到解决方案的邻域时,当它们使用恒定的步长时,我们提出了富有识别的步骤化切换规则,以保证对确切解决方案的融合。此外,我们的收敛保证在任意抽样范式下担保,因此,我们对迷你匹配的复杂性进行了解。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
我们研究了一类算法,用于在内部级别物镜强烈凸起时求解随机和确定性设置中的彼此优化问题。具体地,我们考虑基于不精确的隐含区分的算法,并且我们利用热门开始策略来摊销精确梯度的估计。然后,我们介绍了一个统一的理论框架,受到奇异的扰动系统(Habets,1974)的研究来分析这种摊销算法。通过使用此框架,我们的分析显示了匹配可以访问梯度无偏见估计的Oracle方法的计算复杂度的算法,从而优于彼此优化的许多现有结果。我们在合成实验中说明了这些发现,并展示了这些算法对涉及几千个变量的超参数优化实验的效率。
translated by 谷歌翻译
在本文中,我们提出了一种高效的差异减少了马尔可夫链的附加功能,依赖于新颖的离散时间鞅表示。我们的方法是完全非渐近性的,不需要了解静止分布(甚至任何类型的遍义)或潜在密度的特定结构。通过严格分析所提出的算法的收敛性,我们表明其成本方差产品确实小于一个天真算法之一。Langevin型马尔可夫链蒙特卡罗(MCMC)方法说明了新方法的数值性能。
translated by 谷歌翻译
变性推理(VI)为基于传统的采样方法提供了一种吸引人的替代方法,用于实施贝叶斯推断,因为其概念性的简单性,统计准确性和计算可扩展性。然而,常见的变分近似方案(例如平均场(MF)近似)需要某些共轭结构以促进有效的计算,这可能会增加不必要的限制对可行的先验分布家族,并对变异近似族对差异进行进一步的限制。在这项工作中,我们开发了一个通用计算框架,用于实施MF-VI VIA WASSERSTEIN梯度流(WGF),这是概率度量空间上的梯度流。当专门针对贝叶斯潜在变量模型时,我们将分析基于时间消化的WGF交替最小化方案的算法收敛,用于实现MF近似。特别是,所提出的算法类似于EM算法的分布版本,包括更新潜在变量变异分布的E step以及在参数的变异分布上进行最陡峭下降的m step。我们的理论分析依赖于概率度量空间中的最佳运输理论和细分微积分。我们证明了时间限制的WGF的指数收敛性,以最大程度地减少普通大地测量学严格的凸度的通用物镜功能。我们还提供了通过使用时间限制的WGF的固定点方程从MF近似获得的变异分布的指数收缩的新证明。我们将方法和理论应用于两个经典的贝叶斯潜在变量模型,即高斯混合模型和回归模型的混合物。还进行了数值实验,以补充这两个模型下的理论发现。
translated by 谷歌翻译
随机梯度算法在大规模学习和推理问题中广泛用于优化和采样。但是,实际上,调整这些算法通常是使用启发式和反复试验而不是严格的,可概括的理论来完成的。为了解决理论和实践之间的这一差距,我们通过表征具有固定步长的非常通用的预处理随机梯度算法的迭代术的大样本行为来对调整参数的效果进行新的见解。在优化设置中,我们的结果表明,具有较大固定步长的迭代平均值可能会导致(局部)M-静态器的统计效率近似。在抽样环境中,我们的结果表明,通过适当的调整参数选择,限制固定协方差可以与Bernstein匹配 - 后验的von Mises限制,对模型错误指定后验的调整或MLE的渐近分布;而幼稚的调整极限与这些都不相对应。此外,我们认为可以在数据集对固定数量的通行证后获得基本独立的样本。我们使用模拟和真实数据通过多个实验来验证渐近样结果。总体而言,我们证明具有恒定步长的正确调整的随机梯度算法为获得点估计或后部样品提供了计算上有效且统计上健壮的方法。
translated by 谷歌翻译
In this paper we develop a theoretical analysis of the performance of sampling-based fitted value iteration (FVI) to solve infinite state-space, discounted-reward Markovian decision processes (MDPs) under the assumption that a generative model of the environment is available. Our main results come in the form of finite-time bounds on the performance of two versions of sampling-based FVI. The convergence rate results obtained allow us to show that both versions of FVI are well behaving in the sense that by using a sufficiently large number of samples for a large class of MDPs, arbitrary good performance can be achieved with high probability. An important feature of our proof technique is that it permits the study of weighted L p -norm performance bounds. As a result, our technique applies to a large class of function-approximation methods (e.g., neural networks, adaptive regression trees, kernel machines, locally weighted learning), and our bounds scale well with the effective horizon of the MDP. The bounds show a dependence on the stochastic stability properties of the MDP: they scale with the discounted-average concentrability of the future-state distributions. They also depend on a new measure of the approximation power of the function space, the inherent Bellman residual, which reflects how well the function space is "aligned" with the dynamics and rewards of the MDP. The conditions of the main result, as well as the concepts introduced in the analysis, are extensively discussed and compared to previous theoretical results. Numerical experiments are used to substantiate the theoretical findings.
translated by 谷歌翻译
我们介绍和分析并分析并行蒙特蒙特卡罗方法,了解优化问题的数值解决方案,涉及最小化成本函数,该功能包括许多单独组件的总和。该方案是一种随机零顺序优化算法,只需要评估成本函数的小组集的能力。它可以描绘为一组采样器,可以产生几个概率措施序列的粒子近似。这些措施是以一种方式构建的,使得它们具有相关的概率密度函数,其全球最大值与原始成本函数的全局最小值相一致。该算法选择最佳的执行采样器,并使用它来近似于成本函数的全局最小值。我们在分析上证明了所得估计器几乎肯定地将成本函数的全局最小值收敛并提供了产生的蒙特卡罗样本的数量和搜索空间的维度的显性收敛速率。我们通过数值示例显示该算法可以用多个最小值或具有宽的“平坦”区域来解决成本函数,这很难使用基于梯度的技术最小化。
translated by 谷歌翻译
We study stochastic monotone inclusion problems, which widely appear in machine learning applications, including robust regression and adversarial learning. We propose novel variants of stochastic Halpern iteration with recursive variance reduction. In the cocoercive -- and more generally Lipschitz-monotone -- setup, our algorithm attains $\epsilon$ norm of the operator with $\mathcal{O}(\frac{1}{\epsilon^3})$ stochastic operator evaluations, which significantly improves over state of the art $\mathcal{O}(\frac{1}{\epsilon^4})$ stochastic operator evaluations required for existing monotone inclusion solvers applied to the same problem classes. We further show how to couple one of the proposed variants of stochastic Halpern iteration with a scheduled restart scheme to solve stochastic monotone inclusion problems with ${\mathcal{O}}(\frac{\log(1/\epsilon)}{\epsilon^2})$ stochastic operator evaluations under additional sharpness or strong monotonicity assumptions.
translated by 谷歌翻译
随机多变最小化 - 最小化(SMM)是大多数变化最小化的经典原则的在线延伸,这包括采样I.I.D。来自固定数据分布的数据点,并最小化递归定义的主函数的主要替代。在本文中,我们引入了随机块大大化 - 最小化,其中替代品现在只能块多凸,在半径递减内的时间优化单个块。在SMM中的代理人放松标准的强大凸起要求,我们的框架在内提供了更广泛的适用性,包括在线CANDECOMP / PARAFAC(CP)字典学习,并且尤其是当问题尺寸大时产生更大的计算效率。我们对所提出的算法提供广泛的收敛性分析,我们在可能的数据流下派生,放松标准i.i.d。对数据样本的假设。我们表明,所提出的算法几乎肯定会收敛于速率$ O((\ log n)^ {1+ \ eps} / n ^ {1/2})$的约束下的非凸起物镜的静止点集合。实证丢失函数和$ O((\ log n)^ {1+ \ eps} / n ^ {1/4})$的预期丢失函数,其中$ n $表示处理的数据样本数。在一些额外的假设下,后一趋同率可以提高到$ o((\ log n)^ {1+ \ eps} / n ^ {1/2})$。我们的结果为一般马尔维亚数据设置提供了各种在线矩阵和张量分解算法的第一融合率界限。
translated by 谷歌翻译
我们调查了一定类别的功能不等式,称为弱Poincar的不等式,以使Markov链的收敛性与均衡相结合。我们表明,这使得SubGoom测量收敛界的直接和透明的推导出用于独立的Metropolis - Hastings采样器和用于棘手似然性的伪边缘方法,后者在许多实际设置中是子表芯。这些结果依赖于马尔可夫链之间的新量化比较定理。相关证据比依赖于漂移/较小化条件的证据更简单,并且所开发的工具允许我们恢复并进一步延长特定情况的已知结果。我们能够为伪边缘算法的实际使用提供新的见解,分析平均近似贝叶斯计算(ABC)的效果以及独立平均值的产品,以及研究与之相关的逻辑重量的情况粒子边缘大都市 - 黑斯廷斯(PMMH)。
translated by 谷歌翻译
Bilevel优化是在机器学习的许多领域中最小化涉及另一个功能的价值函数的问题。在大规模的经验风险最小化设置中,样品数量很大,开发随机方法至关重要,而随机方法只能一次使用一些样品进行进展。但是,计算值函数的梯度涉及求解线性系统,这使得很难得出无偏的随机估计。为了克服这个问题,我们引入了一个新颖的框架,其中内部问题的解决方案,线性系统的解和主要变量同时发展。这些方向是作为总和写成的,使其直接得出无偏估计。我们方法的简单性使我们能够开发全球差异算法,其中所有变量的动力学都会降低差异。我们证明,萨巴(Saba)是我们框架中著名的传奇算法的改编,具有$ o(\ frac1t)$收敛速度,并且在polyak-lojasciewicz的假设下实现了线性收敛。这是验证这些属性之一的双光线优化的第一种随机算法。数值实验验证了我们方法的实用性。
translated by 谷歌翻译
我们介绍了螺旋(一种超线性收敛的增量近端算法),用于在相对平滑度假设下求解非凸的正则有限总和问题。本着Svrg和Sarah的精神,螺旋的每一个迭代都由一个内部和外循环组成。它将增量和完整(近端)梯度更新与LineSearch相结合。结果表明,在使用准牛顿方向时,在极限点的轻度假设下达到了超线性收敛。更重要的是,多亏了该线路搜索,确保全球融合得以确保最终将始终接受单位步骤。在不同的凸,非凸和非lipschitz可区分问题上的仿真结果表明,我们的算法以及其自适应变体都与最新的状态竞争。
translated by 谷歌翻译