基于学习的边缘检测有很强地监督的是用像素 - 明智的注释进行了强烈监督,这是手动获取的乏味。我们研究了自我训练边缘检测问题,利用了未开发的大型未标记图像数据集。我们设计具有多层正规化和自学的自我监督框架。特别地,我们强加了一个一致性正则化,该正则化强制执行来自多个层中的每一个的输出,以对输入图像及其扰动的对应物一致。我们采用L0平滑作为“扰动”,以鼓励在自我监督学习集群假设之后展示展示突出边界的边缘预测。同时,通过伪标签进行多层监督,网络训练,该伪标签与罐头边缘初始化,然后通过网络迭代地改进,因为培训进行了。正规化和自我教学共同实现了精确和召回的良好平衡,导致对监督方法的显着提升,在目标数据集中轻质细化。此外,我们的方法展示了强大的交叉数据集普遍性。例如,与现有的方法相比,在看不见的数据集上测试时,OCS的ODS提高了4.8%和5.8%。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
现有的突出实例检测(SID)方法通常从像素级注释数据集中学习。在本文中,我们向SID问题提出了第一个弱监督的方法。虽然在一般显着性检测中考虑了弱监管,但它主要基于使用类标签进行对象本地化。然而,仅使用类标签来学习实例知识的显着性信息是不普遍的,因为标签可能不容易地分离具有高语义亲和力的显着实例。由于子化信息提供了对突出项的数量的即时判断,因此自然地与检测突出实例相关,并且可以帮助分离相同实例的不同部分的同一类别的单独实例。灵感来自这一观察,我们建议使用课程和镇展标签作为SID问题的弱监督。我们提出了一种具有三个分支的新型弱监管网络:显着性检测分支利用类一致性信息来定位候选物体;边界检测分支利用类差异信息来解除对象边界;和Firedroid检测分支,使用子化信息来检测SALICE实例质心。然后融合该互补信息以产生突出的实例图。为方便学习过程,我们进一步提出了一种渐进的培训方案,以减少标签噪声和模型中学到的相应噪声,通过往复式突出实例预测和模型刷新模型。我们广泛的评估表明,该方法对精心设计的基线方法进行了有利地竞争,这些方法适应了相关任务。
translated by 谷歌翻译
当前的最新显着性检测模型在很大程度上依赖于精确的像素注释的大型数据集,但是手动标记像素是时必的且劳动力密集的。有一些用于减轻该问题的弱监督方法,例如图像标签,边界框标签和涂鸦标签,而在该领域仍未探索点标签。在本文中,我们提出了一种使用点监督的新型弱监督的显着对象检测方法。为了推断显着性图,我们首先设计了一种自适应掩盖洪水填充算法以生成伪标签。然后,我们开发了一个基于变压器的点保护显着性检测模型,以产生第一轮显着图。但是,由于标签的稀疏性,弱监督模型倾向于退化为一般​​的前景检测模型。为了解决这个问题,我们提出了一种非征服方法(NSS)方法,以优化第一轮中产生的错误显着图,并利用它们进行第二轮训练。此外,我们通过重新标记DUTS数据集来构建一个新的监督数据集(P-DUTS)。在p-duts中,每个显着对象只有一个标记点​​。在五个最大基准数据集上进行的全面实验表明,我们的方法的表现优于先前的最先进方法,该方法接受了更强的监督,甚至超过了几种完全监督的最先进模型。该代码可在以下网址获得:https://github.com/shuyonggao/psod。
translated by 谷歌翻译
半监督对象检测(SSOD)的最新进展主要由基于一致性的伪标记方法驱动,用于图像分类任务,产生伪标签作为监控信号。然而,在使用伪标签时,缺乏考虑本地化精度和放大的类别不平衡,这两者都对于检测任务至关重要。在本文中,我们介绍了针对物体检测量身定制的确定性感知伪标签,可以有效地估计导出的伪标签的分类和定位质量。这是通过将传统定位转换为分类任务之后的传统定位来实现的。在分类和本地化质量分数上调节,我们动态调整用于为每个类别生成伪标签和重重损耗函数的阈值,以减轻类别不平衡问题。广泛的实验表明,我们的方法在Coco和Pascal VOC上的1-2%AP改善了最先进的SSOD性能,同时与大多数现有方法正交和互补。在有限的注释制度中,我们的方法可以通过从Coco标记的1-10%标记数据来改善监督基准。
translated by 谷歌翻译
边缘检测是许多计算机视觉应用的基础。最先进的国家主要依赖于两个决定性因素的深度学习:数据集内容和网络的体系结构。大多数公共可用数据集未策划边缘检测任务。在这里,我们为此约束提供解决方案。首先,我们认为边缘,轮廓和边界尽管它们重叠,是需要单独的基准数据集的三个不同的视觉功能。为此,我们介绍了一个新的边缘数据集。其次,我们提出了一种新颖的架构,称为边缘检测(Dexined)的密集极端成立网络,可以从划痕的情况下培训,而没有任何预先训练的重量。Dexined优于所呈现的数据集中的其他算法。它还概括到其他数据集没有任何微调。由于IT输出的更锐利和更精细的边缘,所以更高的Dexined质量也显着显着。
translated by 谷歌翻译
Open-World实例细分(OWIS)旨在从图像中分割类不足的实例,该图像具有广泛的现实应用程序,例如自主驾驶。大多数现有方法遵循两阶段的管道:首先执行类不足的检测,然后再进行特定于类的掩模分段。相比之下,本文提出了一个单阶段框架,以直接为每个实例生成掩码。另外,实例掩码注释在现有数据集中可能很吵。为了克服这个问题,我们引入了新的正规化损失。具体而言,我们首先训练一个额外的分支来执行预测前景区域的辅助任务(即属于任何对象实例的区域),然后鼓励辅助分支的预测与实例掩码的预测一致。关键的见解是,这种交叉任务一致性损失可以充当误差校正机制,以打击注释中的错误。此外,我们发现所提出的跨任务一致性损失可以应用于图像,而无需任何注释,将自己借给了半监督的学习方法。通过广泛的实验,我们证明了所提出的方法可以在完全监督和半监督的设置中获得令人印象深刻的结果。与SOTA方法相比,所提出的方法将$ ap_ {100} $得分提高了4.75 \%\%\%\ rightarrow $ uvo设置和4.05 \%\%\%\%\%\%\ rightarrow $ uvo设置。在半监督学习的情况下,我们的模型仅使用30 \%标记的数据学习,甚至超过了其完全监督的数据,并具有5​​0 \%标记的数据。该代码将很快发布。
translated by 谷歌翻译
无监督的突出物体检测(USOD)对于工业应用和下游任务来说是最重要的意义。基于深度学习(DL)的USOD方法利用多种传统的SOD方法提取的一些低质量的显着性预测,作为显着性提示,主要捕获图像中的一些显着区域。此外,它们通过语义信息的助手优化这些显着性提示,该显着性提示是由其他相关视觉任务中的监督学习训练的一些型号获得的。在这项工作中,我们提出了一种两级激活 - 到显着性(A2S)框架,有效地产生了高质量的显着性提示,并使用这些提示培训强大的耐药性检测器。更重要的是,在整个培训过程中没有人类注释参与我们的框架。在第一阶段中,我们将普雷托网络(MOCO V2)转换为将多级别特征聚合到单个激活图,其中提出了一种自适应决策边界(ADB)来帮助训练变换网络。为了便于生成高质量的伪标签,我们提出了一种损失功能来扩大像素之间的特征距离及其手段。在第二阶段,在线标签纠正(OLR)策略在培训过程中更新伪标签,以减少分散的人的负面影响。此外,我们使用两个残余注意模块(RAM)来构造轻量级显着探测器,其使用低级功能中的互补信息,例如边缘和颜色,从而优化高级功能。对几个SOD基准的广泛实验证明,与现有的USOD方法相比,我们的框架报告了显着性能。此外,在3000张图像上培训我们的框架约1小时,比以前的最先进的方法快30倍。
translated by 谷歌翻译
为了提高实例级别检测/分割性能,现有的自我监督和半监督方法从未标记的数据提取非常任务 - 无关或非常任务特定的训练信号。我们认为这两种方法在任务特异性频谱的两端是任务性能的次优。利用太少的任务特定的培训信号导致底下地区任务的地面真理标签导致磨损,而相反的原因会在地面真理标签上过度装修。为此,我们提出了一种新的类别无关的半监督预测(CASP)框架,在提取来自未标记数据的训练信号中实现更有利的任务特异性平衡。与半监督学习相比,CASP通过忽略伪标签中的类信息并具有仅使用任务 - 不相关的未标记数据的单独预先预订阶段来减少训练信号的任务特异性。另一方面,CASP通过利用盒子/面具级伪标签来保留适量的任务特异性。因此,我们的预磨模模型可以更好地避免在下游任务上的FineTuned时避免在地面真理标签上抵抗/过度拟合。使用3.6M未标记的数据,我们在对象检测上实现了4.7%的显着性能增益。我们的预制模型还展示了对其他检测和分割任务/框架的优异可转移性。
translated by 谷歌翻译
迄今为止,最强大的半监督对象检测器(SS-OD)基于伪盒,该盒子需要一系列带有微调超参数的后处理。在这项工作中,我们建议用稀疏的伪盒子以伪造的伪标签形式取代稀疏的伪盒。与伪盒相比,我们的密集伪标签(DPL)不涉及任何后处理方法,因此保留了更丰富的信息。我们还引入了一种区域选择技术,以突出关键信息,同时抑制密集标签所携带的噪声。我们将利用DPL作为密集老师的拟议的SS-OD算法命名。在可可和VOC上,密集的老师在各种环境下与基于伪盒的方法相比表现出卓越的表现。
translated by 谷歌翻译
现有的基于深度学习(基于DL的)无监督的显着对象检测(USOD)方法基于传统显着性方法和预处理深网的先验知识,在图像中学习显着信息。但是,这些方法采用了一种简单的学习策略来训练深层网络,因此无法将培训样本的“隐藏”信息正确地纳入学习过程。此外,对于分割对象至关重要的外观信息仅在网络训练过程后用作后处理。为了解决这两个问题,我们提出了一个新颖的外观引导的细心自进度学习框架,以无视显着对象检测。提出的框架将自定进度的学习(SPL)和外观指导集成到统一的学习框架中。具体而言,对于第一期,我们提出了一个细心的自进度学习(ASPL)范式,该范式以有意义的命令组织培训样本,以逐步挖掘更详细的显着性信息。我们的ASPL促进了我们的框架,能够自动产生软关注权重,以纯粹的自学方式衡量训练样本的学习难度。对于第二期,我们提出了一个外观指南模块(AGM),该模块将每个像素作为显着性边界的概率的局部外观对比,并通过最大化概率找到目标对象的潜在边界。此外,我们通过汇总其他模态数据的外观向量,例如深度图,热图像或光流,将框架进一步扩展到其他多模式SOD任务。关于RGB,RGB-D,RGB-T和视频SOD基准的广泛实验证明,我们的框架可以针对现有的USOD方法实现最新性能,并且与最新的监督SOD方法相当。
translated by 谷歌翻译
利用伪标签(例如,类别和边界框)由教师探测器产生的未注释的对象,已经为半监督对象检测(SSOD)的最新进展提供了很多进展。但是,由于稀缺注释引起的教师探测器的概括能力有限,因此产生的伪标签通常偏离地面真理,尤其是那些具有相对较低分类信心的人,从而限制了SSOD的概括性能。为了减轻此问题,我们为SSOD提出了一个双伪标签抛光框架。我们没有直接利用教师探测器生成的伪标签,而是首次尝试使用双抛光学习来减少它们偏离地面真相的偏差,其中两个不同结构化的抛光网络是精心开发和培训的分别在给定注释对象上的类别和边界框的真相。通过这样做,两个抛光网络都可以通过基于最初产生的伪标签充分利用其上下文知识来推断未注释的对象的更准确的伪标签,从而提高了SSOD的概括性能。此外,可以将这种方案无缝地插入现有的SSOD框架中,以进行端到端学习。此外,我们建议将抛光的伪类别和未注释的对象的边界框,用于单独的类别分类和SSOD中的边界框回归,这使得在模型训练过程中可以引入更多未经许可的对象,从而进一步提高了性能。 Pascal VOC和MS Coco基准测试的实验证明了该方法比现有最新基准的优越性。
translated by 谷歌翻译
In contrast to fully supervised methods using pixel-wise mask labels, box-supervised instance segmentation takes advantage of simple box annotations, which has recently attracted increasing research attention. This paper presents a novel single-shot instance segmentation approach, namely Box2Mask, which integrates the classical level-set evolution model into deep neural network learning to achieve accurate mask prediction with only bounding box supervision. Specifically, both the input image and its deep features are employed to evolve the level-set curves implicitly, and a local consistency module based on a pixel affinity kernel is used to mine the local context and spatial relations. Two types of single-stage frameworks, i.e., CNN-based and transformer-based frameworks, are developed to empower the level-set evolution for box-supervised instance segmentation, and each framework consists of three essential components: instance-aware decoder, box-level matching assignment and level-set evolution. By minimizing the level-set energy function, the mask map of each instance can be iteratively optimized within its bounding box annotation. The experimental results on five challenging testbeds, covering general scenes, remote sensing, medical and scene text images, demonstrate the outstanding performance of our proposed Box2Mask approach for box-supervised instance segmentation. In particular, with the Swin-Transformer large backbone, our Box2Mask obtains 42.4% mask AP on COCO, which is on par with the recently developed fully mask-supervised methods. The code is available at: https://github.com/LiWentomng/boxlevelset.
translated by 谷歌翻译
图像平滑是一项基本的低级视觉任务,旨在保留图像的显着结构,同时删除微不足道的细节。图像平滑中已经探索了深度学习,以应对语义结构和琐碎细节的复杂纠缠。但是,当前的方法忽略了平滑方面的两个重要事实:1)受限数量的高质量平滑地面真相监督的幼稚像素级回归可能会导致域的转移,并导致对现实世界图像的概括问题; 2)纹理外观与对象语义密切相关,因此图像平滑需要意识到语义差异以应用自适应平滑强度。为了解决这些问题,我们提出了一个新颖的对比语义引导的图像平滑网络(CSGIS-NET),该网络在促进强大的图像平滑之前结合了对比的先验和语义。通过利用不希望的平滑效应作为负面教师,并结合分段任务以鼓励语义独特性来增强监督信号。为了实现所提出的网络,我们还使用纹理增强和平滑标签(即VOC-Smooth)丰富了原始的VOC数据集,它们首先桥接图像平滑和语义分割。广泛的实验表明,所提出的CSGI-NET大量优于最先进的算法。代码和数据集可在https://github.com/wangjie6866/csgis-net上找到。
translated by 谷歌翻译
注释大规模数据集以进行监督的视频阴影检测方法是一项挑战。直接使用在标记的图像上训练的模型直接导致高概括错误和时间不一致的结果。在本文中,我们通过提出一个时空插值一致性训练(Stict)框架来解决这些挑战,以合理地将未标记的视频框架以及标记的图像以及图像阴影检测网络训练中进行合理地馈送。具体而言,我们提出了空间和时间ICT,其中定义了两个新的插值方案,\ textit {i.e。},空间插值和时间插值。然后,我们相应地得出了相应的空间和时间插值一致性约束,以增强像素智能分类任务中的概括和分别鼓励时间一致的预测。此外,我们设计了一个量表感知网络,用于图像中的多尺度阴影知识学习,并提出了比例一致性约束,以最大程度地减少不同尺度上预测之间的差异。我们提出的方法在VISHA数据集和自称数据集上得到了广泛的验证。实验结果表明,即使没有视频标签,我们的方法也比大多数最新的监督,半监督或无监督的图像/视频阴影检测方法以及相关任务中的其他方法更好。代码和数据集可在\ url {https://github.com/yihong-97/stict}上获得。
translated by 谷歌翻译
玻璃在我们的日常生活中非常普遍。现有的计算机视觉系统忽略了它,因此可能会产生严重的后果,例如,机器人可能会坠入玻璃墙。但是,感知玻璃的存在并不简单。关键的挑战是,任意物体/场景可以出现在玻璃后面。在本文中,我们提出了一个重要的问题,即从单个RGB图像中检测玻璃表面。为了解决这个问题,我们构建了第一个大规模玻璃检测数据集(GDD),并提出了一个名为GDNet-B的新颖玻璃检测网络,该网络通过新颖的大型场探索大型视野中的丰富上下文提示上下文特征集成(LCFI)模块并将高级和低级边界特征与边界特征增强(BFE)模块集成在一起。广泛的实验表明,我们的GDNET-B可以在GDD测试集内外的图像上达到满足玻璃检测结果。我们通过将其应用于其他视觉任务(包括镜像分割和显着对象检测)来进一步验证我们提出的GDNET-B的有效性和概括能力。最后,我们显示了玻璃检测的潜在应用,并讨论了可能的未来研究方向。
translated by 谷歌翻译
We propose a novel end-to-end curriculum learning approach for sparsely labelled animal datasets leveraging large volumes of unlabelled data to improve supervised species detectors. We exemplify the method in detail on the task of finding great apes in camera trap footage taken in challenging real-world jungle environments. In contrast to previous semi-supervised methods, our approach adjusts learning parameters dynamically over time and gradually improves detection quality by steering training towards virtuous self-reinforcement. To achieve this, we propose integrating pseudo-labelling with curriculum learning policies and show how learning collapse can be avoided. We discuss theoretical arguments, ablations, and significant performance improvements against various state-of-the-art systems when evaluating on the Extended PanAfrican Dataset holding approx. 1.8M frames. We also demonstrate our method can outperform supervised baselines with significant margins on sparse label versions of other animal datasets such as Bees and Snapshot Serengeti. We note that performance advantages are strongest for smaller labelled ratios common in ecological applications. Finally, we show that our approach achieves competitive benchmarks for generic object detection in MS-COCO and PASCAL-VOC indicating wider applicability of the dynamic learning concepts introduced. We publish all relevant source code, network weights, and data access details for full reproducibility. The code is available at https://github.com/youshyee/DCL-Detection.
translated by 谷歌翻译
完全监督的显着对象检测(SOD)方法取得了长足的进步,但是这种方法通常依赖大量的像素级注释,这些注释耗时且耗时。在本文中,我们专注于混合标签下的新的弱监督SOD任务,其中监督标签包括传统无监督方法生成的大量粗标签和少量的真实标签。为了解决此任务中标签噪声和数量不平衡问题的问题,我们设计了一个新的管道框架,采用三种复杂的培训策略。在模型框架方面,我们将任务分解为标签细化子任务和显着对象检测子任务,它们相互合作并交替训练。具体而言,R-NET设计为配备有指导和聚合机制的搅拌机的两流编码器模型(BGA),旨在纠正更可靠的伪标签的粗标签,而S-NET是可更换的。由当前R-NET生成的伪标签监督的SOD网络。请注意,我们只需要使用训练有素的S-NET进行测试。此外,为了确保网络培训的有效性和效率,我们设计了三种培训策略,包括替代迭代机制,小组智慧的增量机制和信誉验证机制。五个草皮基准的实验表明,我们的方法在定性和定量上都针对弱监督/无监督/无监督的方法实现了竞争性能。
translated by 谷歌翻译
微创手术中的手术工具检测是计算机辅助干预措施的重要组成部分。当前的方法主要是基于有监督的方法,这些方法需要大量的完全标记的数据来培训监督模型,并且由于阶级不平衡问题而患有伪标签偏见。但是,带有边界框注释的大图像数据集通常几乎无法使用。半监督学习(SSL)最近出现了仅使用适度的注释数据训练大型模型的一种手段。除了降低注释成本。 SSL还显示出希望产生更强大和可推广的模型。因此,在本文中,我们在手术工具检测范式中介绍了半监督学习(SSL)框架,该框架旨在通过知识蒸馏方法来减轻培训数据的稀缺和数据失衡。在拟议的工作中,我们培训了一个标有数据的模型,该模型启动了教师学生的联合学习,在该学习中,学生接受了来自未标记数据的教师生成的伪标签的培训。我们提出了一个多级距离,在检测器的利益区域头部具有基于保证金的分类损失函数,以有效地将前景类别与背景区域隔离。我们在M2CAI16-Tool-locations数据集上的结果表明,我们的方法在不同的监督数据设置(1%,2%,5%,注释数据的10%)上的优越性,其中我们的模型可实现8%,12%和27的总体改善在最先进的SSL方法和完全监督的基线上,MAP中的%(在1%标记的数据上)。该代码可在https://github.com/mansoor-at/semi-supervise-surgical-tool-det上获得
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译