引入了Wasserstein距离的许多变体,以减轻其原始计算负担。尤其是切成薄片的距离(SW),该距离(SW)利用了一维投影,可以使用封闭式的瓦斯汀距离解决方案。然而,它仅限于生活在欧几里得空间中的数据,而Wasserstein距离已被研究和最近在歧管上使用。我们更具体地专门地关注球体,为此定义了新颖的SW差异,我们称之为球形切片 - 拖鞋,这是朝着定义SW差异的第一步。我们的构造明显基于圆圈上瓦斯汀距离的封闭式解决方案,以及新的球形ra径。除了有效的算法和相应的实现外,我们在几个机器学习用例中说明了它的属性,这些用例中,数据的球形表示受到威胁:在球体上的密度估计,变异推理或超球体自动编码器。
translated by 谷歌翻译
切成薄片的Wasserstein(SW)距离已在不同的应用程序场景中广泛使用,因为它可以缩放到大量的支撑量,而不会受到维数的诅咒。切成薄片的瓦斯坦距离的值是通过radon变换(RT)获得的原始度量的一维表示(投影)之间运输成本的平均值。尽管估计切成薄片的瓦斯坦族的支持效率,但仍需要在高维环境中进行相对较大的预测。因此,对于与维度相比,支撑次数相对较少的应用,例如,使用微型批量方法的几个深度学习应用,radon transform的矩阵乘法中的复杂性成为主要计算瓶颈。为了解决这个问题,我们建议通过线性和随机组合少量的预测来得出预测,这些预测被称为瓶颈预测。我们通过引入层次ra transform(HRT)来解释这些投影的用法,该层rad rad transform(HRT)是通过递归应用radon变换变体构建的。然后,我们将方法制定为措施之间的新指标,该指标命名为分层切片瓦斯坦(HSW)距离。通过证明HRT的注入性,我们得出了HSW的指标。此外,我们研究了HSW的理论特性,包括其与SW变体的联系及其计算和样品复杂性。最后,我们将HSW的计算成本和生成质量与常规SW进行比较,使用包括CIFAR10,Celeba和Tiny Imagenet在内的各种基准数据集进行深层生成建模的任务。
translated by 谷歌翻译
Wasserstein-Fisher-Rao(WFR)距离是一个指标家族,用于评估两种ra措施的差异,这同时考虑了运输和重量的变化。球形WFR距离是WFR距离的投影版本,以实现概率措施,因此配备了WFR的ra尺度空间可以在概率测量的空间中,用球形WFR视为公式锥。与Wasserstein距离相比,在球形WFR下对大地测量学的理解尚不清楚,并且仍然是持续的研究重点。在本文中,我们开发了一个深度学习框架,以计算球形WFR指标下的大地测量学,并且可以采用学习的大地测量学来生成加权样品。我们的方法基于球形WFR的Benamou-Brenier型动态配方。为了克服重量变化带来的边界约束的困难,将基于反向映射的kullback-leibler(KL)发散术语引入成本函数。此外,引入了使用粒子速度的新的正则化项,以替代汉密尔顿 - 雅各比方程的动态公式中的潜力。当用于样品生成时,与先前的流量模型相比,与给定加权样品的应用相比,我们的框架可能对具有给定加权样品的应用有益。
translated by 谷歌翻译
通过最小化kullback-leibler(kl)差异,变化推断近似于非差异分布。尽管这种差异对于计算有效,并且已在应用中广泛使用,但它具有一些不合理的属性。例如,它不是一个适当的度量标准,即,它是非对称的,也不保留三角形不等式。另一方面,最近的最佳运输距离显示出比KL差异的一些优势。在这些优势的帮助下,我们通过最大程度地减少切片的瓦斯汀距离,这是一种由最佳运输产生的有效度量,提出了一种新的变异推理方法。仅通过运行MCMC而不能解决任何优化问题,就可以简单地近似切片的Wasserstein距离。我们的近似值也不需要变异分布的易于处理密度函数,因此诸如神经网络之类的发电机可以摊销近似家庭。此外,我们提供了方法的理论特性分析。说明了关于合成和真实数据的实验,以显示提出的方法的性能。
translated by 谷歌翻译
隐式和明确的生成建模的几种作品经验观察到特征学习鉴别器在模型的样本质量方面优于固定内核鉴别器。我们在使用函数类$ \ mathcal {f} _2 $和$ \ mathcal {f} _1 $分别在使用函数类$ \ mathcal {f} _2 $分别提供分离结果。 。特别地,我们构造了通过固定内核$(\ Mathcal {F} _2)$积分概率度量(IPM)和高维度的超积分(\ Mathcal {F} _2)和高维度差异(SD)的超领域的分布对。但是可以是由他们的特征学习($ \ mathcal {f} _1 $)对应物歧视。为了进一步研究分离,我们提供$ \ mathcal {f} _1 $和$ \ mathcal {f} _2 $ IMM之间的链接。我们的工作表明,固定内核鉴别者的表现比其特征学习对应者更糟糕,因为它们的相应度量较弱。
translated by 谷歌翻译
在概率密度范围内相对于Wassersein度量的空间的梯度流程通常具有很好的特性,并且已在几种机器学习应用中使用。计算Wasserstein梯度流量的标准方法是有限差异,使网格上的基础空间离散,并且不可扩展。在这项工作中,我们提出了一种可扩展的近端梯度型算法,用于Wassersein梯度流。我们的方法的关键是目标函数的变分形式,这使得可以通过引流 - 双重优化实现JKO近端地图。可以通过替代地更新内部和外环中的参数来有效地解决该原始问题。我们的框架涵盖了包括热方程和多孔介质方程的所有经典Wasserstein梯度流。我们展示了若干数值示例的算法的性能和可扩展性。
translated by 谷歌翻译
本文介绍了一种新的基于仿真的推理程序,以对访问I.I.D. \ samples的多维概率分布进行建模和样本,从而规避明确建模密度函数或设计Markov Chain Monte Carlo的通常方法。我们提出了一个称为可逆的Gromov-monge(RGM)距离的新概念的距离和同构的动机,并研究了RGM如何用于设计新的转换样本,以执行基于模拟的推断。我们的RGM采样器还可以估计两个异质度量度量空间之间的最佳对齐$(\ cx,\ mu,c _ {\ cx})$和$(\ cy,\ cy,\ nu,c _ {\ cy})$从经验数据集中,估计的地图大约将一个量度$ \ mu $推向另一个$ \ nu $,反之亦然。我们研究了RGM距离的分析特性,并在轻度条件下得出RGM等于经典的Gromov-Wasserstein距离。奇怪的是,与Brenier的两极分解结合了连接,我们表明RGM采样器以$ C _ {\ cx} $和$ C _ {\ cy} $的正确选择诱导了强度同构的偏见。研究了有关诱导采样器的收敛,表示和优化问题的统计率。还展示了展示RGM采样器有效性的合成和现实示例。
translated by 谷歌翻译
切成薄片的距离(SW)是一种计算有效的,理论上是Wasserstein距离的替代方案。然而,关于切片的分布,其统计特性(超出统一度量)的文献很少。为了为这一研究带来新的贡献,我们利用了Pac-bayesian理论和SW实际取决于切片分布依赖的Gibbs风险的中心观察,而Pac-Bayesian的数量范围已经设计为表征。我们提供四种类型的结果:i)在我们称为自适应切片的距离距离的豆豆泛化范围,即针对任何切片的分布定义的距离,ii)学习切片分布的过程最大歧视性的SW,通过优化我们的Pac-bayesian边界,iii)关于如何通过我们的理论来解释所谓的分布分布切片的距离,以及我们发现的经验例证。
translated by 谷歌翻译
分发比较在许多机器学习任务中起着核心作用,例如数据分类和生成建模。在这项研究中,我们提出了一种称为希尔伯特曲线投影(HCP)距离的新型度量,以测量具有高鲁棒性和低复杂性的两个概率分布之间的距离。特别是,我们首先使用希尔伯特曲线投射两个高维概率密度,以获得它们之间的耦合,然后根据耦合在原始空间中这两个密度之间的传输距离进行计算。我们表明,HCP距离是一个适当的度量标准,对于绝对连续的概率度量,定义明确。此外,我们证明,经验HCP距离在规律性条件下以不超过$ O(n^{ - 1/2d})$的速度收敛到其人口。为了抑制差异性的诅咒,我们还使用(可学习的)子空间投影开发了HCP距离的两个变体。合成数据和现实世界数据的实验表明,我们的HCP距离是瓦斯汀距离的有效替代,其复杂性低并克服了切成薄片的瓦斯坦距离的缺点。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
传统的切成薄片的瓦斯汀定义在两个具有矢量的概率度量之间。当比较图像的两个概率度量时,从业人员首先需要使用样品矩阵和投影矩阵之间的矩阵乘法来矢量化图像,然后将它们投影到一维空间。之后,通过平均两种相应的一维投影概率度量来评估切片的瓦斯汀。但是,这种方法有两个局限性。第一个限制是,图像的空间结构不会通过矢量化步骤有效地捕获。因此,后来的切片过程变得越来越难以收集差异信息。第二个限制是内存效率低下,因为每个切片方向是具有与图像相同的尺寸的向量。为了解决这些局限性,我们提出了针对基于卷积算子的图像的概率度量,用于切成薄片的新型切片方法。我们通过将步幅,扩张和非线性激活函数纳入卷积算子来得出卷积切成薄片的Wasserstein(CSW)及其变体。我们研究了CSW的指标及其样品复杂性,其计算复杂性以及与常规切片的Wasserstein距离的联系。最后,我们证明了CSW在比较图像和训练图像上的深层生成模型中的概率度量方面的良好性能比传统切成薄片的Wasserstein相比。
translated by 谷歌翻译
We introduce and study a novel model-selection strategy for Bayesian learning, based on optimal transport, along with its associated predictive posterior law: the Wasserstein population barycenter of the posterior law over models. We first show how this estimator, termed Bayesian Wasserstein barycenter (BWB), arises naturally in a general, parameter-free Bayesian model-selection framework, when the considered Bayesian risk is the Wasserstein distance. Examples are given, illustrating how the BWB extends some classic parametric and non-parametric selection strategies. Furthermore, we also provide explicit conditions granting the existence and statistical consistency of the BWB, and discuss some of its general and specific properties, providing insights into its advantages compared to usual choices, such as the model average estimator. Finally, we illustrate how this estimator can be computed using the stochastic gradient descent (SGD) algorithm in Wasserstein space introduced in a companion paper arXiv:2201.04232v2 [math.OC], and provide a numerical example for experimental validation of the proposed method.
translated by 谷歌翻译
变性推理(VI)为基于传统的采样方法提供了一种吸引人的替代方法,用于实施贝叶斯推断,因为其概念性的简单性,统计准确性和计算可扩展性。然而,常见的变分近似方案(例如平均场(MF)近似)需要某些共轭结构以促进有效的计算,这可能会增加不必要的限制对可行的先验分布家族,并对变异近似族对差异进行进一步的限制。在这项工作中,我们开发了一个通用计算框架,用于实施MF-VI VIA WASSERSTEIN梯度流(WGF),这是概率度量空间上的梯度流。当专门针对贝叶斯潜在变量模型时,我们将分析基于时间消化的WGF交替最小化方案的算法收敛,用于实现MF近似。特别是,所提出的算法类似于EM算法的分布版本,包括更新潜在变量变异分布的E step以及在参数的变异分布上进行最陡峭下降的m step。我们的理论分析依赖于概率度量空间中的最佳运输理论和细分微积分。我们证明了时间限制的WGF的指数收敛性,以最大程度地减少普通大地测量学严格的凸度的通用物镜功能。我们还提供了通过使用时间限制的WGF的固定点方程从MF近似获得的变异分布的指数收缩的新证明。我们将方法和理论应用于两个经典的贝叶斯潜在变量模型,即高斯混合模型和回归模型的混合物。还进行了数值实验,以补充这两个模型下的理论发现。
translated by 谷歌翻译
标准化流动,扩散归一化流量和变形自动置换器是强大的生成模型。在本文中,我们提供了一个统一的框架来通过马尔可夫链处理这些方法。实际上,我们考虑随机标准化流量作为一对马尔可夫链,满足一些属性,并表明许多用于数据生成的最先进模型适合该框架。马尔可夫链的观点使我们能够将确定性层作为可逆的神经网络和随机层作为大都会加速层,Langevin层和变形自身偏移,以数学上的声音方式。除了具有Langevin层的密度的层,扩散层或变形自身形式,也可以处理与确定性层或大都会加热器层没有密度的层。因此,我们的框架建立了一个有用的数学工具来结合各种方法。
translated by 谷歌翻译
We consider the constrained sampling problem where the goal is to sample from a distribution $\pi(x)\propto e^{-f(x)}$ and $x$ is constrained on a convex body $\mathcal{C}\subset \mathbb{R}^d$. Motivated by penalty methods from optimization, we propose penalized Langevin Dynamics (PLD) and penalized Hamiltonian Monte Carlo (PHMC) that convert the constrained sampling problem into an unconstrained one by introducing a penalty function for constraint violations. When $f$ is smooth and the gradient is available, we show $\tilde{\mathcal{O}}(d/\varepsilon^{10})$ iteration complexity for PLD to sample the target up to an $\varepsilon$-error where the error is measured in terms of the total variation distance and $\tilde{\mathcal{O}}(\cdot)$ hides some logarithmic factors. For PHMC, we improve this result to $\tilde{\mathcal{O}}(\sqrt{d}/\varepsilon^{7})$ when the Hessian of $f$ is Lipschitz and the boundary of $\mathcal{C}$ is sufficiently smooth. To our knowledge, these are the first convergence rate results for Hamiltonian Monte Carlo methods in the constrained sampling setting that can handle non-convex $f$ and can provide guarantees with the best dimension dependency among existing methods with deterministic gradients. We then consider the setting where unbiased stochastic gradients are available. We propose PSGLD and PSGHMC that can handle stochastic gradients without Metropolis-Hasting correction steps. When $f$ is strongly convex and smooth, we obtain an iteration complexity of $\tilde{\mathcal{O}}(d/\varepsilon^{18})$ and $\tilde{\mathcal{O}}(d\sqrt{d}/\varepsilon^{39})$ respectively in the 2-Wasserstein distance. For the more general case, when $f$ is smooth and non-convex, we also provide finite-time performance bounds and iteration complexity results. Finally, we test our algorithms on Bayesian LASSO regression and Bayesian constrained deep learning problems.
translated by 谷歌翻译
Monge Map是指两个概率分布之间的最佳运输映射,并提供了将一个分发转换为另一个的原则方法。尽管最佳运输问题的数值方法的快速发展,但计算Monge地图仍然具有挑战性,特别是对于高维问题。在本文中,我们提出了一种可扩展算法,用于计算两个概率分布之间的Monge地图。我们的算法基于最佳运输问题的弱形式,因此它仅需要来自边缘的样本而不是其分析表达式,并且可以容纳两个具有不同尺寸的分布之间的最佳运输。我们的算法适用于一般成本函数,与其他现有方法相比,用于使用样本估计Monge Maps的方法,这些方法通常用于二次成本。通过具有合成和现实数据的一系列实验来证明我们的算法的性能。
translated by 谷歌翻译
我们介绍了一类小说的预计方法,对实际线上的概率分布数据集进行统计分析,具有2-Wassersein指标。我们特别关注主成分分析(PCA)和回归。为了定义这些模型,我们通过将数据映射到合适的线性空间并使用度量投影运算符来限制Wassersein空间中的结果来利用与其弱利米结构密切相关的Wasserstein空间的表示。通过仔细选择切线,我们能够推出快速的经验方法,利用受约束的B样条近似。作为我们方法的副产品,我们还能够为PCA的PCA进行更快的例程来获得分布。通过仿真研究,我们将我们的方法与先前提出的方法进行比较,表明我们预计的PCA具有类似的性能,即使在拼盘下也是极其灵活的。研究了模型的若干理论性质,并证明了渐近一致性。讨论了两个真实世界应用于美国和风速预测的Covid-19死亡率。
translated by 谷歌翻译
切片 - Wasserstein距离(SW)越来越多地用于机器学习应用,作为Wassersein距离的替代方案,并提供了显着的计算和统计效益。由于它被定义为随机投影的期望,因此SW通常由Monte Carlo近似。我们通过利用测量现象的浓度来采用新的视角来近似SW:在温和的假设下,高维随机向量的一维突起大致高斯。基于此观察,我们为SW开发了一个简单的确定性近似。我们的方法不需要采样许多随机投影,因此与通常的Monte Carlo近似相比,准确且易于使用。我们派生了我们的方法的非对应保证,并且显示近似误差随着数据分布的弱依赖条件下的弱依赖条件而变为零。我们验证了对合成数据集的理论发现,并说明了在生成建模问题上提出的近似。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
我们介绍了用于生成建模的广义能量模型(GEBM)。这些模型组合了两个训练有素的组件:基本分布(通常是隐式模型),可以在高维空间中学习具有低固有尺寸的数据的支持;和能量功能,优化学习支持的概率质量。能量函数和基座都共同构成了最终模型,与GANS不同,它仅保留基本分布(“发电机”)。通过在学习能量和基础之间交替进行培训GEBMS。我们表明,两种培训阶段都明确定义:通过最大化广义可能性来学习能量,并且由此产生的能源的损失提供了学习基础的信息梯度。可以通过MCMC获得来自训练模型的潜在空间的后部的样品,从而在该空间中找到产生更好的质量样本的区域。经验上,图像生成任务上的GEBM样本比来自学习发电机的图像更好,表明所有其他相同,GEBM将优于同样复杂性的GAN。当使用归一化流作为基础测量时,GEBMS成功地启动密度建模任务,返回相当的性能以直接相同网络的最大可能性。
translated by 谷歌翻译