犯罪预测对于公共安全和资源优化至关重要,但由于两个方面而言,这是非常具有挑战性的:i)犯罪活动的刑事模式的动态,犯罪事件在空间和时间域之间不均匀分布; ii)延时依赖于不同类型的犯罪(例如,盗窃,抢劫,攻击,损害),其揭示了犯罪的细粒度语义。为了解决这些挑战,我们提出了空间时间顺序超图网络(ST-SHN),以集体编码复杂的犯罪空间模式以及潜在的类别明智犯罪语义关系。具体而言,在长期和全局上下文下处理空间 - 时间动态,我们设计了一个具有超图学习范例的集成的图形结构化消息传递架构。为了在动态环境中捕获类别方面的犯罪异构关系,我们介绍了多通道路由机制,以了解犯罪类型的时间不断发展的结构依赖性。我们对两个现实世界数据集进行了广泛的实验,表明我们所提出的ST-SHN框架可以显着提高与各种最先进的基线相比的预测性能。源代码可用于:https://github.com/akaxlh/st-hn。
translated by 谷歌翻译
接触犯罪和暴力会损害个人的生活质量和社区的经济增长。鉴于机器学习的迅速发展,需要探索自动解决方案以防止犯罪。随着细粒度的城市和公共服务数据的可用性越来越多,最近融合了这种跨域信息以促进犯罪预测的激增。通过捕获有关社会结构,环境和犯罪趋势的信息,现有的机器学习预测模型从不同观点探索了动态犯罪模式。但是,这些方法主要将这种多源知识转换为隐性和潜在表示(例如,学区的嵌入),这仍然是研究显式因素对幕后犯罪发生的影响的影响仍然是一个挑战。在本文中,我们提出了一个时空的元数据指导性犯罪预测(STMEC)框架,以捕获犯罪行为的动态模式,并明确地表征了环境和社会因素如何相互互动以产生预测。广泛的实验表明,与其他先进的时空模型相比,STMEC的优越性,尤其是在预测重罪(例如使用危险武器的抢劫和袭击)时。
translated by 谷歌翻译
Robust prediction of citywide traffic flows at different time periods plays a crucial role in intelligent transportation systems. While previous work has made great efforts to model spatio-temporal correlations, existing methods still suffer from two key limitations: i) Most models collectively predict all regions' flows without accounting for spatial heterogeneity, i.e., different regions may have skewed traffic flow distributions. ii) These models fail to capture the temporal heterogeneity induced by time-varying traffic patterns, as they typically model temporal correlations with a shared parameterized space for all time periods. To tackle these challenges, we propose a novel Spatio-Temporal Self-Supervised Learning (ST-SSL) traffic prediction framework which enhances the traffic pattern representations to be reflective of both spatial and temporal heterogeneity, with auxiliary self-supervised learning paradigms. Specifically, our ST-SSL is built over an integrated module with temporal and spatial convolutions for encoding the information across space and time. To achieve the adaptive spatio-temporal self-supervised learning, our ST-SSL first performs the adaptive augmentation over the traffic flow graph data at both attribute- and structure-levels. On top of the augmented traffic graph, two SSL auxiliary tasks are constructed to supplement the main traffic prediction task with spatial and temporal heterogeneity-aware augmentation. Experiments on four benchmark datasets demonstrate that ST-SSL consistently outperforms various state-of-the-art baselines. Since spatio-temporal heterogeneity widely exists in practical datasets, the proposed framework may also cast light on other spatial-temporal applications. Model implementation is available at https://github.com/Echo-Ji/ST-SSL.
translated by 谷歌翻译
我们研究了具有动态,可能的周期性的流量的预测问题和区域之间的关节空间依赖关系。鉴于从时隙0到T-1的城市中区的聚合流入和流出流量,我们预测了任何区域的时间t的流量。该地区的现有技术通常以脱钩的方式考虑空间和时间依赖性,或者在具有大量超参数曲调的训练中是相当的计算密集。我们提出了ST-TIS,一种新颖,轻巧和准确的空间变压器,具有信息融合和区域采样进行交通预测。 ST-TIS将规范变压器与信息融合和区域采样延伸。信息融合模块捕获区域之间的复杂空间依赖关系。该区域采样模块是提高效率和预测精度,将计算复杂性切割为依赖性学习从$ O(n ^ 2)$到$ O(n \ sqrt {n})$,其中n是区域的数量。比最先进的模型的参数较少,我们模型的离线培训在调整和计算方面明显更快(培训时间和网络参数减少高达90±90 \%)。尽管存在这种培训效率,但大量实验表明,ST-TIS在网上预测中大幅度更准确,而不是最先进的方法(平均改善高达11 \%$ 11 \%$ ON MAPE上的$ 14 \%$ 14 \%$ 14 \%$ ON MAPE) 。
translated by 谷歌翻译
本文旨在统一非欧几里得空间中的空间依赖性和时间依赖性,同时捕获流量数据的内部空间依赖性。对于具有拓扑结构的时空属性实体,时空是连续的和统一的,而每个节点的当前状态都受到每个邻居的变异时期的邻居的过去状态的影响。大多数用于流量预测研究的空间依赖性和时间相关性的空间神经网络在处理中分别损害了时空完整性,而忽略了邻居节点的时间依赖期可以延迟和动态的事实。为了建模这种实际条件,我们提出了一种新型的空间 - 周期性图神经网络,将空间和时间视为不可分割的整体,以挖掘时空图,同时通过消息传播机制利用每个节点的发展时空依赖性。进行消融和参数研究的实验已经验证了拟议的遍及术的有效性,并且可以从https://github.com/nnzhan/traversenet中找到详细的实现。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
图表上的交通流量预测在许多字段(例如运输系统和计算机网络)中具有现实世界应用。由于复杂的时空相关性和非线性交通模式,交通预测可能是高度挑战的。现有的作品主要是通过分别考虑空间相关性和时间相关性来模拟此类时空依赖性的模型,并且无法对直接的时空相关性进行建模。受到图形域中变形金刚最近成功的启发,在本文中,我们建议使用局部多头自我攻击直接建模时空图上的跨空间相关性。为了降低时间的复杂性,我们将注意力接收场设置为空间相邻的节点,还引入了自适应图以捕获隐藏的空间范围依赖性。基于这些注意机制,我们提出了一种新型的自适应图形时空变压器网络(ASTTN),该网络堆叠了多个时空注意层以在输入图上应用自我注意力,然后是线性层进行预测。公共交通网络数据集,Metr-La PEMS-Bay,PEMSD4和PEMSD7的实验结果证明了我们模型的出色性能。
translated by 谷歌翻译
对于许多在线平台(例如,视频共享网站,电子商务系统),学习动态用户的偏好已成为越来越重要的组成部分,以提出顺序建议。先前的工作已经做出了许多努力,以基于各种体系结构(例如,经常性的神经网络和自我注意机制)对用户交互序列进行建模项目项目过渡。最近出现的图形神经网络还用作有用的骨干模型,可在顺序推荐方案中捕获项目依赖性。尽管它们有效,但现有的方法却远远集中在具有单一相互作用类型的项目序列表示上,因此仅限于捕获用户和项目之间的动态异质关系结构(例如,页面视图,添加最佳选择,购买,购买)。为了应对这一挑战,我们设计了多行为超毛力增强的变压器框架(MBHT),以捕获短期和长期跨型行为依赖性。具体而言,多尺度变压器配备了低级别的自我注意力,可从细粒度和粗粒水平的共同编码行为感知的顺序模式。此外,我们将全局多行为依赖性纳入HyperGraph神经体系结构中,以自定义的方式捕获层次长期项目相关性。实验结果证明了我们MBHT在不同环境中的各种最新推荐解决方案的优势。进一步的消融研究证明了我们的模型设计和新MBHT框架的好处的有效性。我们的实施代码在以下网址发布:https://github.com/yuh-yang/mbht-kdd22。
translated by 谷歌翻译
我们都取决于流动性,车辆运输会影响我们大多数人的日常生活。因此,预测道路网络中流量状态的能力是一项重要的功能和具有挑战性的任务。流量数据通常是从部署在道路网络中的传感器获得的。关于时空图神经网络的最新建议通过将流量数据建模为扩散过程,在交通数据中建模复杂的时空相关性方面取得了巨大进展。但是,直观地,流量数据包含两种不同类型的隐藏时间序列信号,即扩散信号和固有信号。不幸的是,几乎所有以前的作品都将交通信号完全视为扩散的结果,同时忽略了固有的信号,这会对模型性能产生负面影响。为了提高建模性能,我们提出了一种新型的脱钩时空框架(DSTF),该框架以数据驱动的方式将扩散和固有的交通信息分开,其中包含独特的估计门和残差分解机制。分离的信号随后可以通过扩散和固有模块分别处理。此外,我们提出了DSTF的实例化,分离的动态时空图神经网络(D2STGNN),可捕获时空相关性,还具有动态图学习模块,该模块针对学习流量网络动态特征的学习。使用四个现实世界流量数据集进行的广泛实验表明,该框架能够推进最先进的框架。
translated by 谷歌翻译
异质图卷积网络在解决异质网络数据的各种网络分析任务方面已广受欢迎,从链接预测到节点分类。但是,大多数现有作品都忽略了多型节点之间的多重网络的关系异质性,而在元路径中,元素嵌入中关系的重要性不同,这几乎无法捕获不同关系跨不同关系的异质结构信号。为了应对这一挑战,这项工作提出了用于异质网络嵌入的多重异质图卷积网络(MHGCN)。我们的MHGCN可以通过多层卷积聚合自动学习多重异质网络中不同长度的有用的异质元路径相互作用。此外,我们有效地将多相关结构信号和属性语义集成到学习的节点嵌入中,并具有无监督和精选的学习范式。在具有各种网络分析任务的五个现实世界数据集上进行的广泛实验表明,根据所有评估指标,MHGCN与最先进的嵌入基线的优势。
translated by 谷歌翻译
图形神经网络(GNN)已显示为与用户项目交互图建模的协作过滤(CF)的有前途的解决方案。现有基于GNN的推荐系统的关键思想是递归执行沿用户项目交互边缘传递的消息,以完善编码的嵌入。然而,尽管它们有效,但当前的大多数推荐模型都依赖于足够和高质量的培训数据,因此学习的表示形式可以很好地捕获准确的用户偏好。用户行为数据在许多实际建议方案中通常很嘈杂,并且表现出偏斜的分布,这可能会导致基于GNN的模型中的次优表示性能。在本文中,我们提出了SHT,这是一种新颖的自我监视的超盖变压器框架(SHT),该框架(SHT)通过以明确的方式探索全球协作关系来增强用户表示。具体而言,我们首先赋予图形神经CF范式,以通过HyperGraph Transformer网络维护用户和项目之间的全局协作效果。在蒸馏的全球环境中,提出了一个跨视图生成的自我监督学习组件,用于对用户项目交互图的数据增强,以增强推荐系统的鲁棒性。广泛的实验表明,SHT可以显着改善各种最新基线的性能。进一步的消融研究表明,我们的SHT推荐框架在减轻数据稀疏性和噪声问题方面具有出色的表示能力。源代码和评估数据集可在以下网址获得:https://github.com/akaxlh/sht。
translated by 谷歌翻译
许多以前的研究旨在增加具有深度神经网络技术的协同过滤,以实现更好的推荐性能。但是,大多数现有的基于深度学习的推荐系统专为建模单数类型的用户项目交互行为而设计,这几乎无法蒸馏用户和项目之间的异构关系。在实际推荐方案中,存在多重的用户行为,例如浏览和购买。由于用户的多行为模式在不同的项目上俯视,现有推荐方法不足以捕获来自用户多行为数据的异构协作信号。灵感灵感来自图形神经网络的结构化数据建模,这项工作提出了一个图形神经多行为增强建议(GNMR)框架,其明确地模拟了基于图形的消息传递体系结构下不同类型的用户项目交互之间的依赖性。 GNMR向关系聚合网络设计为模拟交互异质性,并且通过用户项交互图递归地执行相邻节点之间的嵌入传播。实体世界推荐数据集的实验表明,我们的GNMR始终如一地优于最先进的方法。源代码可在https://github.com/akaxlh/gnmr中获得。
translated by 谷歌翻译
电子商务在通过互联网增强商人的能力方面已经大有帮助。为了有效地存储商品并正确安排营销资源,对他们来说,进行准确的总商品价值(GMV)预测非常重要。但是,通过数字化数据的缺乏进行准确的预测是不算平的。在本文中,我们提出了一个解决方案,以更好地预测Apay应用程序内的GMV。得益于Graph Neural网络(GNN),它具有很好的关联不同实体以丰富信息的能力,我们提出了Gaia,Gaia是一个图形神经网络(GNN)模型,具有时间移动意识注意。Gaia利用相关的电子销售商的销售信息,并根据时间依赖性学习邻居相关性。通过测试Apleay的真实数据集并与其他基线进行比较,Gaia表现出最佳性能。盖亚(Gaia)部署在模拟的在线环境中,与基线相比,这也取得了很大的进步。
translated by 谷歌翻译
准确性和可解释性是犯罪预测模型的两个基本属性。由于犯罪可能对人类生命,经济和安全的不利影响,我们需要一个可以尽可能准确地预测未来犯罪的模型,以便可以采取早期步骤来避免犯罪。另一方面,可解释的模型揭示了模型预测背后的原因,确保其透明度并允许我们相应地规划预防犯罪步骤。开发模型的关键挑战是捕获特定犯罪类别的非线性空间依赖和时间模式,同时保持模型的底层结构可解释。在本文中,我们开发AIST,一种用于犯罪预测的注意力的可解释的时空时间网络。基于过去的犯罪发生,外部特征(例如,流量流量和兴趣点(POI)信息)和犯罪趋势,AICT模拟了犯罪类别的动态时空相关性。广泛的实验在使用真实数据集的准确性和解释性方面表现出我们模型的优越性。
translated by 谷歌翻译
动态需求预测对于城市交通系统有效运行和管理至关重要。在单模需求预测上进行了广泛的研究,忽略了不同运输模式的需求可以彼此相关。尽管最近的一些努力,现有的多式化需求预测方法通常不够灵活,以便在不同模式下具有不同的空间单元和异质时空相关性的多路复用网络。为了解决这些问题,本研究提出了一种多重峰需求预测的多关系时空图神经网络(ST-MRGNN)。具体地,跨模式的空间依赖性被多个内部和模态关系图编码。引入多关系图神经网络(MRGNN)以捕获跨模式异构空间依赖性,包括广义图卷积网络,以了解关系图中的消息传递机制和基于关注的聚合模块,以总结不同的关系。我们进一步将MRGNN与时间门控卷积层相结合,共同模拟异质时滞的相关性。广泛的实验是使用真实的地铁和来自纽约市的乘车数据集进行的实验,结果验证了我们提出的方法对模式的现有方法的提高性能。需求稀疏位置的改进特别大。进一步分析ST-MRGNN的注意机制还表明了对理解跨模式相互作用的良好解释性。
translated by 谷歌翻译
由于动态和复杂的时空依赖性,交通预测具有挑战性。但是,现有方法仍然受到两个关键局限性。首先,许多方法通常使用静态预定义或自适应的空间图来捕获流量系统中动态的时空依赖性,这限制了灵活性,并且仅捕获了整个时间的共享模式,从而导致了次优性能。此外,大多数方法在每个时间步骤中都单独和独立地考虑地面真理与预测之间的绝对误差,这无法维持整体时间序列的全球属性和统计数据,并导致地面真相和预测之间的趋势差异。为此,在本文中,我们提出了一个动态自适应和对抗图卷积网络(DAAGCN),该网络将图形卷积网络(GCN)与生成的对抗网络(GANS)结合在一起,以进行流量预测。具体而言,DAAGCN利用带栅极模块的通用范式将时间变化的嵌入与节点嵌入集成在一起,以生成动态自适应图,以在每个时间步骤中推断空间 - 周期依赖性。然后,设计了两个歧视因子,以维持预测时间序列的全局属性的一致性,并在序列和图形级别上具有地面真相。在四个基准数据集上进行的广泛实验表明,DAAGCN的表现平均比最新的5.05%,3.80%和5.27%在MAE,RMSE和MAPE方面,同时加快收敛性高达9倍。代码可从https://github.com/juyongjiang/daagcn获得。
translated by 谷歌翻译
准确预测短期OD矩阵(即,从各种来源到目的地的乘客流量的分布)是地铁系统中的一个重要任务。由于许多影响因素的不断变化的性质和实时延迟数据收集问题,这是强大的挑战性。最近,已经提出了一些基于学习的基于学习的模型,以便在乘车和高速公路中进行OD矩阵预测。然而,由于其不同的先验知识和上下文设置,这些模型不能充分捕获地铁网络中的站点之间的复杂时空相关性。在本文中,我们提出了一个混合框架多视图Trgru来解决OD Metro Matrix预测。特别是,它使用三个模块来模拟三个流动变化模式:最近的趋势,日常趋势,每周趋势。在每个模块中,基于每个站的嵌入的多视图表示被构造并馈送到基于变压器的门控复发结构,以通过全球自我注意机制捕获不同站的OD流的动态空间依赖性。在三种大型现实世界地铁数据集上进行了广泛的实验,证明了我们的多视图Trgru在其他竞争对手的优越性。
translated by 谷歌翻译
流行预测是有效控制流行病的关键,并帮助世界缓解威胁公共卫生的危机。为了更好地了解流行病的传播和演变,我们提出了Epignn,这是一种基于图神经网络的流行病预测模型。具体而言,我们设计了一个传输风险编码模块,以表征区域在流行过程中的局部和全局空间效应,并将其纳入模型。同时,我们开发了一个区域感知的图形学习者(RAGL),该图形将传播风险,地理依赖性和时间信息考虑在内,以更好地探索时空依赖性,并使地区意识到相关地区的流行状况。 RAGL还可以与外部资源(例如人类流动性)相结合,以进一步提高预测性能。对五个现实世界流行有关的数据集(包括流感和Covid-19)进行的全面实验证明了我们提出的方法的有效性,并表明Epignn在RMSE中优于最先进的基线。
translated by 谷歌翻译
多变量时间序列预测,分析历史时序序列以预测未来趋势,可以有效地帮助决策。 MTS中变量之间的复杂关系,包括静态,动态,可预测和潜在的关系,使得可以挖掘MTS的更多功能。建模复杂关系不仅是表征潜在依赖性的必要条件以及建模时间依赖性,而且在MTS预测任务中也带来了极大的挑战。然而,现有方法主要关注模拟MTS变量之间的某些关系。在本文中,我们提出了一种新的端到端深度学习模型,通过异构图形神经网络(MTHETGNN)称为多变量时间序列预测。为了表征变量之间的复杂关系,在MTHETGNN中设计了一个关系嵌入模块,其中每个变量被视为图形节点,并且每种类型的边缘表示特定的静态或动态关系。同时,引入了时间嵌入模块的时间序列特征提取,其中涉及具有不同感知尺度的卷积神经网络(CNN)滤波器。最后,采用异质图形嵌入模块来处理由两个模块产生的复杂结构信息。来自现实世界的三个基准数据集用于评估所提出的MTHETGNN。综合实验表明,MTHETGNN在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it's fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information. CCS CONCEPTS• Computing methodologies → Neural networks; Artificial intelligence.
translated by 谷歌翻译