策略分解(PODEC)是一个框架,在将政策推导到最佳控制问题时,可以减少维度的诅咒。对于给定的系统表示形式,即描述系统的状态变量和控制输入,PODEC生成了分解所有控制输入的策略的策略。因此,不同输入的策略以脱钩或级联的方式得出,作为状态变量某些子集的函数,导致计算减少。但是,系统表示的选择至关重要,因为它决定了由此产生的策略的次优性。我们提出了一种启发式方法,可以找到更适合分解的表示形式。我们的方法是基于这样的观察结果,即每个分解都以最佳成本为代价,并且已经导致稀疏最佳策略的表示形式在产生的政策中实现了稀疏模式,这可能会产生较低的次级优势的分解。由于尚不清楚最佳策略,我们构建了一个剥夺其LQR近似值的系统表示。对于简化的双头,4个自由度的操纵器和四轮驱动器,我们发现分解物比Vanilla Podec确定的轨迹成本降低了10%。此外,与最先进的强化学习算法获得的政策相比,分解政策产生的轨迹的成本大大降低。
translated by 谷歌翻译
加固学习算法可以解决动态决策和最优控制问题。通过连续值的状态和输入变量,强化学习算法必须依赖函数近似器来表示值函数和策略映射。常用的数值近似器,如神经网络或基础函数扩展,具有两个主要缺点:它们是黑匣子型号,可以对学习的映射有很小的洞察力,并且他们需要广泛的试验和错误调整它们的超参数。在本文中,我们通过使用符号回归提出了一种以分析表达式的形式构建平滑值函数的新方法。我们介绍了三种离线方法,用于基于状态转换模型查找值函数:符号值迭代,符号策略迭代,以及Bellman方程的直接解决方案。该方法在四个非线性控制问题上说明:速度控制摩擦力控制,单键和双连杆摆动,和磁操作。结果表明,该价值函数产生良好的策略,并紧凑,数学上易行,易于插入其他算法。这使得它们可能适用于进一步分析闭环系统。使用神经网络的替代方法的比较表明,我们的方法优于基于神经网络的方法。
translated by 谷歌翻译
使用逆动力学的最佳控制(OC)提供了数值益处,例如粗略优化,更便宜的衍生物计算和高收敛速率。但是,为了利用腿部机器人的模型预测控制(MPC)中的这些好处,有效处理其大量平等约束至关重要。为此,我们首先(i)提出了一种新的方法来处理基于NullSpace参数化的平等约束。我们的方法可以适当地平衡最优性,以及动态和平等构成可行性,从而增加了吸引到良好本地最小值的盆地。为此,我们(ii)(ii)通过合并功能功能来调整以可行性为导向的搜索。此外,我们介绍了(iii)的(iii)对考虑任意执行器模型的反向动力学的凝结公式。我们还基于感知运动框架中基于反向动力学的新型MPC(iv)。最后,我们提出(v)最佳控制与正向动力学和逆动力学的理论比较,并通过数值评估。我们的方法使逆动力学MPC在硬件上首次应用,从而在Anymal机器人上进行了最新的动态攀登。我们在广泛的机器人问题上进行基准测试,并产生敏捷和复杂的动作。我们显示了我们的无空间分辨率和凝结配方的计算降低(高达47.3%)。我们通过以高收敛速率解决粗略优化问题(最多10 Hz离散化)来提供方法的益处。我们的算法在Crocoddyl内公开可用。
translated by 谷歌翻译
元学习是机器学习的一个分支,旨在将相关任务分布的数据合成以有效地解决新的数据。在过程控制中,许多系统具有相似且充分理解的动力学,这表明可以通过元学习创建可推广的控制器是可行的。在这项工作中,我们制定了一种元加强学习(META-RL)控制策略,该策略利用已知的离线信息进行培训,例如模型结构。对模型参数的分布而不是单个模型,对元RL代理进行了训练,从而使代理能够自动适应过程动力学的变化,同时保持性能。一个关键的设计元素是能够在培训期间离线利用基于模型的信息,同时保持与新环境交互的无模型策略结构。我们以前的工作已经证明了如何将这种方法应用于调整比例综合控制器以控制一阶过程的与工业相关的问题。在这项工作中,我们简要地重新引入了我们的方法,并证明了如何将其扩展到比例综合衍生的控制器和二阶系统。
translated by 谷歌翻译
差分动态编程(DDP)是用于轨迹优化的直接单射击方法。它的效率来自对时间结构的开发(最佳控制问题固有的)和系统动力学的明确推出/集成。但是,它具有数值不稳定,与直接多个射击方法相比,它的初始化选项有限(允许对控件的初始化,但不能对状态进行初始化),并且缺乏对控制约束的正确处理。在这项工作中,我们采用可行性驱动的方法来解决这些问题,该方法调节数值优化过程中的动态可行性并确保控制限制。我们的可行性搜索模拟了只有动态约束的直接多重拍摄问题的数值解决。我们证明我们的方法(命名为box-fddp)具有比Box-DDP+(单个射击方法)更好的数值收敛性,并且其收敛速率和运行时性能与使用The Solded Sound的最新直接转录配方竞争内部点和主动集算法在Knitro中提供。我们进一步表明,Box-FDP可以单调地降低动态可行性误差 - 与最先进的非线性编程算法相同。我们通过为四足动物和人形机器人产生复杂而运动的运动来证明我们的方法的好处。最后,我们强调说,Box-FDDP适用于腿部机器人中的模型预测控制。
translated by 谷歌翻译
通用非线性系统的最优控制是自动化中的中央挑战。通过强大的函数近似器启用的数据驱动的控制方法,最近在处理具有挑战性的机器人应用方面取得了巨大成功。但是,这些方法通常会掩盖黑盒上过度参数化表示的动态和控制的结构,从而限制了我们理解闭环行为的能力。本文采用混合系统的非线性建模和控制的视图,对问题提供显式层次结构,并将复杂的动态分解为更简单的本地化单元。因此,我们考虑一个序列建模范式,它捕获数据的时间结构,并导出了一种具有非线性边界的随机分段仿射动态系统将非线性动力学自动分解的序列 - 最大化(EM)算法。此外,我们表明,这些时间序列模型自然地承认我们使用的闭环扩展,以通过模仿学习从非线性专家提取本地线性或多项式反馈控制器。最后,我们介绍了一种新的混合地位熵策略搜索(HB-reps)技术,其结合了混合系统的分层性质,并优化了从全局价值函数的局部多项式近似导出的一组时间不变的局部反馈控制器。
translated by 谷歌翻译
我们考虑在一个有限时间范围内的离散时间随机动力系统的联合设计和控制。我们将问题作为一个多步优化问题,在寻求识别系统设计和控制政策的不确定性下,共同最大化所考虑的时间范围内收集的预期奖励总和。转换函数,奖励函数和策略都是参数化的,假设与其参数有所不同。然后,我们引入了一种深度加强学习算法,将策略梯度方法与基于模型的优化技术相结合以解决这个问题。从本质上讲,我们的算法迭代地估计通过Monte-Carlo采样和自动分化的预期返回的梯度,并在环境和策略参数空间中投影梯度上升步骤。该算法称为直接环境和策略搜索(DEPS)。我们评估我们算法在三个环境中的性能,分别在三种环境中进行了一个群众弹簧阻尼系统的设计和控制,分别小型离网电力系统和无人机。此外,我们的算法是针对用于解决联合设计和控制问题的最先进的深增强学习算法的基准测试。我们表明,在所有三种环境中,DEPS至少在或更好地执行,始终如一地产生更高的迭代返回的解决方案。最后,通过我们的算法产生的解决方案也与由算法产生的解决方案相比,不共同优化环境和策略参数,突出显示在执行联合优化时可以实现更高返回的事实。
translated by 谷歌翻译
本文介绍了在最近开发的神经网络架构上的不确定系统构建的非线性控制器的参数化,称为经常性平衡网络(REN)以及YOULA参数化的非线性版本。拟议的框架具有“内置”保证稳定性,即搜索空间中的所有政策导致承包(全球指数稳定的)闭环系统。因此,它需要对成本函数的选择的非常温和的假设,并且可以推广稳定性属性以看不见的数据。这种方法的另一个有用特征是在没有任何约束的情况下直接参数化的策略,这简化了基于无约束优化的广泛的政策学习方法学习(例如随机梯度下降)。我们说明了具有各种模拟示例的所提出的方法。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
连续控制的强化学习(RL)通常采用其支持涵盖整个动作空间的分布。在这项工作中,我们调查了培训的代理经常更喜欢在该空间的界限中普遍采取行动的俗称已知的现象。我们在最佳控制中汲取理论联系,以发出Bang-Bang行为的出现,并在各种最近的RL算法中提供广泛的实证评估。我们通过伯努利分布替换正常高斯,该分布仅考虑沿着每个动作维度的极端 - Bang-Bang控制器。令人惊讶的是,这在几种连续控制基准测试中实现了最先进的性能 - 与机器人硬件相比,能量和维护成本影响控制器选择。由于勘探,学习和最终解决方案纠缠在RL中,我们提供了额外的模仿学习实验,以减少探索对我们分析的影响。最后,我们表明我们的观察结果概括了旨在模拟现实世界挑战和评估因素来减轻Bang-Bang解决方案的因素的环境。我们的调查结果强调了对基准测试连续控制算法的挑战,特别是在潜在的现实世界应用中。
translated by 谷歌翻译
为设计控制器选择适当的参数集对于最终性能至关重要,但通常需要一个乏味而仔细的调整过程,这意味着强烈需要自动调整方法。但是,在现有方法中,无衍生物的可扩展性或效率低下,而基于梯度的方法可能由于可能是非差异的控制器结构而无法使用。为了解决问题,我们使用新颖的无衍生化强化学习(RL)框架来解决控制器调整问题,该框架在经验收集过程中在参数空间中执行时间段的扰动,并将无衍生策略更新集成到高级参与者 - 批判性RL中实现高多功能性和效率的体系结构。为了证明该框架的功效,我们在自动驾驶的两个具体示例上进行数值实验,即使用PID控制器和MPC控制器进行轨迹跟踪的自适应巡航控制。实验结果表明,所提出的方法的表现优于流行的基线,并突出了其强大的控制器调整潜力。
translated by 谷歌翻译
在本文中,我们提出了一种新颖的差异动态编程算法的最大熵制剂,并使用单向和多峰值函数参数化导出两个变体。通过将具有特定近似的成本函数的最大熵贝尔曼方程组合,我们能够获得差分动态编程的新配方,其能够通过多模级政策探索从局部最小值逃脱。为了展示所提出的算法的功效,我们提供了使用多个当地最小值的成本函数表示的四种任务的实验结果,并将它们与Vanilla差分动态规划进行比较。此外,我们讨论了与以前的工作的联系在线性可溶性随机控制框架及其与合成性有关的延伸。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
稳定性认证并确定安全稳定的初始集是确保动态系统的操作安全性,稳定性和鲁棒性的两个重要问题。随着机器学习工具的出现,需要针对反馈循环中具有机器学习组件的系统来解决这些问题。为了开发一种关于神经网络(NN)控制的非线性系统的稳定性和稳定性的一般理论,提出了基于Lyapunov的稳定性证书,并进一步用于设计用于NN Controller和NN控制器和最大LIPSCHITZ绑定的。也是给定的安全操作域内内部相应的最大诱因(ROA)。为了计算这种强大的稳定NN控制器,它也最大化了系统的长期实用程序,提出了稳定性保证训练(SGT)算法。提出的框架的有效性通过说明性示例得到了验证。
translated by 谷歌翻译
从数据稳定动力学系统的数据中学习控制器通常遵循首先识别模型然后基于确定模型构建控制器的两步过程。但是,学习模型意味着确定系统动力学的通用描述,这些描述可能需要大量数据并提取对稳定的特定任务不必要的信息。这项工作的贡献是表明,如果线性动力学系统具有尺寸(McMillan学位)$ n $,那么总是存在$ n $状态,可以从中构建稳定反馈控制器,而与表示的尺寸无关观察到的状态和输入的数量。通过基于先前的工作,这一发现意味着,与学习动力学模型所需的最少状态相比,观察到的状态较少的任何线性动力系统都可以稳定。通过数值实验证明了理论发现,这些实验表明了圆柱体后面的流动稳定,从学习模型的数据少于数据。
translated by 谷歌翻译
在将强化学习(RL)部署到现实世界系统中时,确保安全是一个至关重要的挑战。我们开发了基于置信的安全过滤器,这是一种基于概率动力学模型的标准RL技术,通过标准RL技术学到的名义策略来证明国家安全限制的控制理论方法。我们的方法基于对成本功能的国家约束的重新重新制定,从而将安全验证减少到标准RL任务。通过利用幻觉输入的概念,我们扩展了此公式,以确定对具有很高可能性的未知系统安全的“备份”策略。最后,在推出备用政策期间的每一个时间步骤中,标称政策的调整最少,以便以后可以保证安全恢复。我们提供正式的安全保证,并从经验上证明我们方法的有效性。
translated by 谷歌翻译
这项工作引入了一种数据驱动的控制方法,用于从稀缺数据中稳定高维动力系统。提出的上下文感知控制器推断方法基于这样的观察,即控制器只需要在不稳定的动态上进行本地行动才能稳定系统。这意味着仅仅学习不稳定的动力学就足够了,通常将其限制在所有系统动力学的高维状态空间中,尺寸要少得多,因此很少有数据示例足以识别它们。数值实验表明,与传统的数据驱动的控制技术和增强学习的变体相比,从数量级的数据样本中学习了上下文感知的控制器的推理,从数量级的稳定控制器学习。该实验进一步表明,上下文感知的控制器推断的数据需求较低,在复杂物理学的数据筛分工程问题中尤其有益,在该数据和培训成本方面,学习完整的系统动态通常是棘手的。
translated by 谷歌翻译
将四型人降落在倾斜的表面上是一个具有挑战性的动作。任何倾斜着陆轨迹的最终状态都不是平衡,这排除了大多数常规控制方法的使用。我们提出了一种深入的强化学习方法,以设计倾斜表面的自动着陆控制器。使用具有稀疏奖励和量身定制的课程学习方法的近端政策优化(PPO)算法,可以在不到90分钟的标准笔记本电脑上培训倾斜的着陆政策。然后,该政策直接采用真正的Crazyflie 2.1四型四面管,并成功地在飞行舞台上执行了真正的倾向着陆。单个策略评估大约需要2.5 \,MS,这使其适用于四型在四面体上的未来嵌入式实现。
translated by 谷歌翻译
本文介绍了一个控制 - 理论框架,稳定地结合了在线学习的最佳反馈策略,以控制不确定的非线性系统。给定有界范围内的未知参数,所产生的自适应控制法保证闭环系统的融合到零成本的状态。在通过在线调整学习率设计最佳政策和价值函数时,拟议的框架能够采用确定性的等价原则 - 一种保证稳定学习和控制所需的机制。尽管存在参数不确定度,但熟悉的山地车问题证明了这种方法,在那里显示出近乎最佳的行为。
translated by 谷歌翻译
最近的研究表明,监督学习可以是为高维非线性动态系统设计最佳反馈控制器的有效工具。但是这些神经网络(NN)控制器的行为仍未得到很好的理解。在本文中,我们使用数值模拟来证明典型的测试精度度量没有有效地捕获NN控制器稳定系统的能力。特别是,具有高测试精度的一些NN不能稳定动态。为了解决这个问题,我们提出了两个NN架构,该架构在局部地近似线性二次调节器(LQR)。数值模拟确认了我们的直觉,即建议的架构可靠地产生稳定反馈控制器,而不会牺牲最佳状态。此外,我们介绍了描述这种NN控制系统的一些稳定性特性的初步理论结果。
translated by 谷歌翻译