稀疏PCA是通过在主组件上添加稀疏性约束来从PCA获得的优化问题。即使在单组件情况下,稀疏的PCA也很难且难以近似。在本文中,我们对协方差矩阵的等级来解决稀疏PCA的计算复杂性。我们表明,如果协方差矩阵的等级是固定值,那么存在一种算法,其解决了全局最优性的稀疏PCA,其运行时间是多项式在特征的数量中。我们还向稀疏PCA的版本证明了类似结果,这需要主组件要脱节支持。
translated by 谷歌翻译
计算Wassersein BaryCenters(A.K.A.最佳运输重构)是由于数据科学的许多应用,最近引起了相当大的关注的几何问题。虽然存在任何固定维度的多项式时间算法,但所有已知的运行时间都在维度中呈指数级。这是一个开放的问题,无论是这种指数依赖性是否可改进到多项式依赖性。本文证明,除非P = NP,答案是否定的。这揭示了Wassersein的BaryCenter计算的“维度诅咒”,其不会发生最佳运输计算。此外,我们对计算Wassersein的硬度结果延伸到近似计算,看似简单的问题案例,以及在其他最佳运输指标中平均概率分布。
translated by 谷歌翻译
本文提出了弗兰克 - 沃尔夫(FW)的新变种​​,称为$ k $ fw。标准FW遭受缓慢的收敛性:迭代通常是Zig-zag作为更新方向振荡约束集的极端点。新变种,$ k $ fw,通过在每次迭代中使用两个更强的子问题oracelles克服了这个问题。第一个是$ k $线性优化Oracle($ k $ loo),计算$ k $最新的更新方向(而不是一个)。第二个是$ k $方向搜索($ k $ ds),最大限度地减少由$ k $最新更新方向和之前迭代表示的约束组的目标。当问题解决方案承认稀疏表示时,奥克斯都易于计算,而且$ k $ FW会迅速收敛,以便平滑凸起目标和几个有趣的约束集:$ k $ fw实现有限$ \ frac {4l_f ^ 3d ^} { \ Gamma \ Delta ^ 2} $融合在多台和集团规范球上,以及光谱和核规范球上的线性收敛。数值实验验证了$ k $ fw的有效性,并展示了现有方法的数量级加速。
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem. In many scenarios, however, the meaningful structure is specified in some discrete space, leading to difficult nonconvex optimization problems. In this paper, we connect the model selection problem with structure-promoting regularizers to submodular function minimization with continuous and discrete arguments. In particular, we leverage the theory of submodular functions to identify a class of these problems that can be solved exactly and efficiently with an agnostic combination of discrete and continuous optimization routines. We show how simple continuous or discrete constraints can also be handled for certain problem classes and extend these ideas to a robust optimization framework. We also show how some problems outside of this class can be embedded within the class, further extending the class of problems our framework can accommodate. Finally, we numerically validate our theoretical results with several proof-of-concept examples with synthetic and real-world data, comparing against state-of-the-art algorithms.
translated by 谷歌翻译
我们探索稀疏优化问题的算法和局限性,例如稀疏线性回归和稳健的线性回归。稀疏线性回归问题的目的是确定少数关键特征,而强大的线性回归问题的目标是确定少量错误的测量值。具体而言,稀疏线性回归问题寻求$ k $ -sparse vector $ x \ in \ mathbb {r}^d $以最小化$ \ | ax-b \ | _2 $,给定输入矩阵$ a \ in \ mathbb in \ mathbb {r}^{n \ times d} $和一个目标向量$ b \ in \ mathbb {r}^n $,而强大的线性回归问题寻求一个$ s $ s $,最多可以忽略$ k $行和a向量$ x $最小化$ \ |(ax-b)_s \ | _2 $。我们首先显示了在[OWZ15]工作上稳健回归构建的近似近似值的双晶格,这意味着稀疏回归的结果相似。我们通过减少$ k $ clique的猜想,进一步显示出稳健回归的精细颗粒硬度。在正面,我们给出了一种鲁棒回归的算法,该算法可实现任意准确的添加误差,并使用运行时与从细粒硬度结果中的下界紧密匹配的运行时,以及与类似运行时稀疏回归的算法。我们的上限和下限都依赖于从鲁棒线性回归到我们引入的稀疏回归的一般减少。我们的算法受到3SUM问题的启发,使用大约最近的邻居数据结构,并且可能具有独立的兴趣来解决稀疏优化问题。例如,我们证明我们的技术也可以用于研究稀疏的PCA问题。
translated by 谷歌翻译
The Forster transform is a method of regularizing a dataset by placing it in {\em radial isotropic position} while maintaining some of its essential properties. Forster transforms have played a key role in a diverse range of settings spanning computer science and functional analysis. Prior work had given {\em weakly} polynomial time algorithms for computing Forster transforms, when they exist. Our main result is the first {\em strongly polynomial time} algorithm to compute an approximate Forster transform of a given dataset or certify that no such transformation exists. By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial time algorithm for {\em distribution-free} PAC learning of halfspaces. This learning result is surprising because {\em proper} PAC learning of halfspaces is {\em equivalent} to linear programming. Our learning approach extends to give a strongly polynomial halfspace learner in the presence of random classification noise and, more generally, Massart noise.
translated by 谷歌翻译
分析大型随机矩阵的浓度是多种领域的常见任务。给定独立的随机变量,许多工具可用于分析随机矩阵,其条目在变量中是线性的,例如基质 - 伯恩斯坦不平等。但是,在许多应用中,我们需要分析其条目是变量中多项式的随机矩阵。这些自然出现在光谱算法的分析中,例如霍普金斯等人。 [Stoc 2016],Moitra-Wein [Stoc 2019];并根据正方形层次结构的总和(例如Barak等。 [FOCS 2016],Jones等。 [焦点2021]。在这项工作中,我们基于Paulin-Mackey-Tropp(概率Annals of Poylibity of Poyliby of 2016],我们提出了一个通用框架来获得此类界限。 Efron-Stein不等式通过另一个简单(但仍然是随机)矩阵的范围来界定随机矩阵的规范,我们将其视为通过“区分”起始矩阵而引起的。通过递归区分,我们的框架减少了分析更简单的矩阵的主要任务。对于Rademacher变量,这些简单的矩阵实际上是确定性的,因此,分析它们要容易得多。对于一般的非拉多巴纳变量,任务减少到标量浓度,这要容易得多。此外,在多项式矩阵的设置中,我们的结果推广了Paulin-Mackey-Tropp的工作。使用我们的基本框架,我们在文献中恢复了简单的“张量网络”和“密集图矩阵”的已知界限。使用我们的一般框架,我们得出了“稀疏图矩阵”的边界,琼斯等人最近才获得。 [焦点2021]使用痕量功率方法的非平地应用,并且是其工作中的核心组成部分。我们希望我们的框架对涉及非线性随机矩阵浓度现象的其他应用有帮助。
translated by 谷歌翻译
了解训练具有整流线性单元(RELUS)的训练简单神经网络的计算复杂性最近是一项深入研究的主题。缩小差距和文献的补充结果,我们提供了有关训练两层relu网络的参数复杂性相对于各种损失函数的几个结果。经过对其他参数的简要讨论,我们着重分析培训数据对计算复杂性的尺寸$ d $的影响。我们根据w [1]的参数$ d $提供运行时间的下限,并证明已知的蛮力策略基本上是最佳的(假设指数时间假设)。与以前的工作相比,我们的结果适用于广泛(ER)范围的损失功能,包括[0,\ infty] $中的所有$ p \ for $ \ ell^p $ -loss。特别是,我们将已知的多项式时间算法扩展到常数$ d $,并将凸损失函数扩展到更一般的损耗函数,在这些情况下,我们的运行时间下限也匹配。
translated by 谷歌翻译
我们研究了稀疏张量主成分分析的问题:给定张量$ \ pmb y = \ pmb w + \ lambda x ^ {\ otimes p} $ with $ \ pmb w \ in \ otimes ^ p \ mathbb {r} ^ n $拥有iid高斯条目,目标是恢复$ k $ -parse单位矢量$ x \ in \ mathbb {r} ^ n $。该模型捕获稀疏PCA(其Wigner形式)和张量PCA。对于$ k \ leq \ sqrt {n} $的高稀疏制度,我们介绍了一系列平滑地插值在简单的多项式算法和指数时穷举搜索算法之间的算法。对于任何$ 1 \ leq t \ leq k $,我们的算法恢复了信噪比$ \ lambda \ geq \ tilde {\ mathcal {o}}(\ sqrt {t} \ cdot(k / t )^ {p / 2})$时间$ \ tilde {\ mathcal {o}}(n ^ {p + t})$,捕获矩阵设置的最先进的保证(在两者中多项式时间和子指数时间制度)。我们的结果自然地延伸到$ r $ distinct $ k $ -parse信号的案例与不相交的支持,保证与尖峰的数量无关。即使在稀疏PCA的局限性情况下,已知的算法也仅恢复$ \ lambda \ geq \ tilde {\ mathcal {o}}(k \ cdot r)$的稀疏向量,而我们的算法需要$ \ lambda \ geq \ tilde { \ mathcal {o}}(k)$。最后,通过分析低度似然比,我们将这些算法结果补充,具体证据说明信噪比和运行时间之间的权衡。该下限捕获稀疏PCA和张量PCA的已知下限。在这一普通模型中,我们在标准数量$ N $,稀疏$ k $的样本数量之间观察更复杂的三方权衡,以及张力电源$ p $。
translated by 谷歌翻译
由于机器学习,统计和科学的应用,多边缘最佳运输(MOT)引起了极大的兴趣。但是,在大多数应用中,MOT的成功受到缺乏有效算法的严重限制。实际上,MOT一般需要在边际K及其支撑大小n的数量中指数时间n。本文开发了一个关于“结构”在poly(n,k)时间中可溶解的一般理论。我们开发了一个统一的算法框架,用于通过表征不同算法所需的“结构”来解决poly(n,k)时间中的MOT,这是根据双重可行性甲骨文的简单变体所需的。该框架有几个好处。首先,它使我们能够证明当前是最流行的MOT算法的Sinkhorn算法比其他算法要在poly(n,k)时间中求解MOT所需的结构更严格。其次,我们的框架使得为给定的MOT问题开发poly(n,k)时间算法变得更加简单。特别是(大约)解决双重可行性Oracle是必要和足够的 - 这更适合标准算法技术。我们通过为三个通用类成本结构类别的poly(n,k)时间算法开发poly(n,k)时间算法来说明这种易用性:(1)图形结构; (2)设定优化结构; (3)低阶和稀疏结构。对于结构(1),我们恢复了Sindhorn具有poly(n,k)运行时的已知结果;此外,我们为计算精确且稀疏的解决方案提供了第一个poly(n,k)时间算法。对于结构(2) - (3),我们给出了第一个poly(n,k)时间算法,甚至用于近似计算。这三个结构一起涵盖了许多MOT的当前应用。
translated by 谷歌翻译
我们研究了与给定的无向图$ g $相对应的图形模型的最大似然估计的问题。我们表明,最大似然估计(MLE)是几个帐篷函数的指数的乘积,每个最大集团的$ g $。虽然图形模型中的一组对数符号密度是无限维度的,但我们的结果表明,可以通过求解有限维凸优化问题来找到MLE。我们提供实施和一些示例。此外,我们证明MLE存在并且具有概率为1,只要样品数量大于$ g $ chordal时最大的$ g $集团的大小。我们证明,当图$ g $是集团的不交联时,MLE是一致的。最后,我们讨论了$ g $的图形模型中的对数 - 串联密度在$ g $中具有对数符号分解的条件。
translated by 谷歌翻译
Tensor完成是矩阵完成的自然高阶泛化,其中目标是从其条目的稀疏观察中恢复低级张量。现有算法在没有可证明的担保的情况下是启发式,基于解决运行不切实际的大型半纤维程序,或者需要强大的假设,例如需要因素几乎正交。在本文中,我们介绍了交替最小化的新变型,其又通过了解如何对矩阵设置中的交替最小化的收敛性的进展措施来调整到张量设置的启发。我们展示了强大的可证明的保证,包括表明我们的算法即使当因素高度相关时,我们的算法也会在真正的张量线上会聚,并且可以在几乎线性的时间内实现。此外,我们的算法也非常实用,我们表明我们可以完成具有千维尺寸的三阶张量,从观察其条目的微小一部分。相比之下,有些令人惊讶的是,我们表明,如果没有我们的新扭曲,则表明交替最小化的标准版本可以在实践中以急剧速度收敛。
translated by 谷歌翻译
线性回归是统计和相关字段中的基本建模工具。在本文中,我们研究了线性回归的重要变体,其中预测响应对部分不匹配。我们使用优化公式同时学习基础回归系数和与错配相对应的置换。问题的组合结构导致计算挑战。我们建议并研究一种简单的贪婪本地搜索算法,以解决这种优化问题,该算法具有强大的理论保证和具有吸引力的计算绩效。我们证明,与样本和特征的数量和问题数据的某些假设相比,在适当的不匹配对数的缩放缩放下;我们的本地搜索算法以线性速率收敛到几乎最佳的解决方案。特别是,在无嘈杂的情况下,我们的算法以线性收敛速率收敛到全局最佳解决方案。基于此结果,我们证明了参数估计误差的上限。我们还提出了一个近似的本地搜索步骤,使我们能够将方法扩展到更大的实例。我们进行数值实验,以收集有关我们理论结果的进一步见解,并与现有方法相比显示出令人鼓舞的性能增长。
translated by 谷歌翻译
恢复来自简单测量的稀疏向量的支持是一个广泛研究的问题,考虑在压缩传感,1位压缩感测和更通用的单一索引模型下。我们考虑这个问题的概括:线性回归的混合物,以及线性分类器的混合物,其中目标是仅使用少量可能嘈杂的线性和1位测量来恢复多个稀疏载体的支持。关键挑战是,来自不同载体的测量是随机混合的。最近也接受了这两个问题。在线性分类器的混合物中,观察结果对应于查询的超平面侧随机未知向量,而在线性回归的混合物中,我们观察在查询的超平面上的随机未知向量的投影。从混合物中回收未知载体的主要步骤是首先识别所有单个组分载体的支持。在这项工作中,我们研究了足以在这两种模型中恢复混合物中所有组件向量的支持的测量数量。我们提供使用$ k,\ log n $和准多项式在$ \ ell $中使用多项式多项式的算法,以恢复在每个人的高概率中恢复所有$ \ ell $未知向量的支持组件是$ k $ -parse $ n $ -dimensional向量。
translated by 谷歌翻译
我们考虑指标变量和指标上的任意约束的凸二次优化问题。我们表明,在扩展空间中设置的凸壳描述,其具有二次数量的附加变量包括单个正半纤维限制(明确规定)和线性约束。特别地,对这类问题的凸起减少了描述在扩展制剂中的多面体集。我们还在变量的原始空间中说明:我们提供了基于无限数量的圆锥二次不等式的描述,这些锥形二次不等式是“有限地产生的”。特别地,可以表征给定的不等式是否需要描述凸船。这里介绍了新的理论统一了若干以前建立的结果,并铺平了利用多面体方法来分析混合整数非线性集的凸壳。
translated by 谷歌翻译
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard, because it contains vector cardinality minimization as a special case.In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is Ω(r(m + n) log mn), where m, n are the dimensions of the matrix, and r is its rank.The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
translated by 谷歌翻译
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the 1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
translated by 谷歌翻译
稀疏矩阵分解是近似矩阵$ \ mathbf {z} $ j $稀疏因素$ \ mathbf {x} ^ {(j)} \ mathbf {x} ^ {(j-1)的乘积的问题} \ ldots \ mathbf {x} ^ {(1)} $。本文旨在鉴于在稀疏限制问题良好地提出的情况下更好地理解,鉴于此问题的可识别性问题。我们提供了将矩阵分解成\ emph {两个}稀疏因素的问题承认唯一的解决方案,最多达到不可避免的置换和缩放等效命令。我们的一般框架考虑了一系列规定的稀疏模式,允许我们捕获更多的稀疏性概念,而不是简单的非零条目的计数。这些条件被证明与精确矩阵分解的基本唯一性有关,以秩一矩阵的总和,具有结构的稀疏性约束。特别地,在固定支持稀疏矩阵分子的情况下,我们基于秩一矩阵完成性为可识别性提供一般的条件,并且我们从它源自完井算法,可以验证是否满足此充分条件,并恢复如果是这种情况,这两个稀疏因素中的条目。伴随文件进一步利用这些条件来导出用于多层稀疏矩阵分解的可识别性特性和理论上声音分解方法,以及与诸如Hadamard或离散傅里叶变换的一些众所周知的快速变换相关联的支持约束。
translated by 谷歌翻译
我们考虑测定点过程(DPP)的产物,该点过程,其概率质量与多矩阵的主要成本的产物成比例,作为DPP的天然有希望的推广。我们研究计算其归一化常量的计算复杂性,这是最重要的概率推理任务。我们的复杂性 - 理论结果(差不多)排除了该任务的有效算法的存在,除非输入矩阵被迫具有有利的结构。特别是,我们证明了以下内容:(1)计算$ \ sum_s \ det({\ bf a} _ {s,s,s})^ p $完全针对每个(固定)阳性甚至整数$ p $ up-hard和Mod $ _3 $ p-hard,它给Kulesza和Taskar提出的打开问题给出了否定答案。 (2)$ \ sum_s \ det({\ bf a} _ {s,s})\ det({\ bf b} _ {s,s})\ det({\ bf c} _ {s,s} )$ IS难以在2 ^ {o(| i | i | ^ {1- \ epsilon})} $或$ 2 ^ {o(n ^ {1 / epsilon})} $的任何一个$ \ epsilon> 0 $,其中$ | i | $是输入大小,$ n $是输入矩阵的顺序。这种结果比Gillenwater导出的两个矩阵的#P硬度强。 (3)有$ k ^ {o(k)} n ^ {o(1)} $ - 计算$ \ sum_s \ det的时间算法({\ bf a} _ {s,s})\ det( {\ bf b} _ {s,s})$,其中$ k $是$ \ bf a $和$ \ bf b $的最大等级,或者由$ \ bf a $的非零表项形成的图表的树宽和$ \ bf b $。据说这种参数化算法是固定参数的易解。这些结果可以扩展到固定尺寸的情况。此外,我们介绍了两个固定参数批量算法的应用程序给定矩阵$ \ bf a $ treewidth $ w $:(4)我们可以计算$ 2 ^ {\ frac {n} {2p-1} $ - 近似值到$ \ sum_s \ det({\ bf a} _ {s,s})^ p $ for任何分数$ p> 1 $以$ w ^ {o(wp)} n ^ {o(1)} $时间。 (5)我们可以在$ w ^ {o(w \ sqrt n)} n ^ {
translated by 谷歌翻译