通过共享数据集和基准,已经促进了语音处理的进展。历史上,这些都集中在自动语音识别(ASR),扬声器标识或其他较低级别的任务上。兴趣在更高层次的口语中越来越多,理解任务,包括使用端到端模型,但是此类任务的注释数据集较少。与此同时,最近的工作显示了预先培训通用表示的可能性,然后使用相对较少标记的数据进行微调的多个任务。我们建议为口语语言理解(屠宰)创建一套基准任务,由有限尺寸标记的培训集和相应的评估集组成。该资源将允许研究界跟踪进度,评估高级任务的预先接受预期的表示,并研究开放的问题,例如管道与端到端方法的实用性。我们介绍了雪橇基准套件的第一阶段,包括指定实体识别,情感分析和相应数据集上的ASR。我们专注于自然产生的(未读取或综合)语音和自由可用的数据集。我们为VoxceReb和Voxpopuli数据集的子集提供新的转录和注释,基线模型的评估指标和结果,以及重现基线的开源工具包,并评估新模型。
translated by 谷歌翻译
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译
口语语言理解(SLU)任务涉及从语音音频信号映射到语义标签。鉴于此类任务的复杂性,可能预期良好的性能需要大量标记的数据集,这很难为每个新任务和域收集。但是,最近的自我监督讲话表现的进步使得考虑使用有限标记的数据学习SLU模型是可行的。在这项工作中,我们专注于低资源讨论(ner)并解决问题:超越自我监督的预培训,我们如何使用未为任务注释的外部语音和/或文本数据?我们借鉴了各种方法,包括自我训练,知识蒸馏和转移学习,并考虑其对端到端模型和管道(语音识别后跟文本型号)的适用性。我们发现,这些方法中的几种方法可以在资源受限的环境中提高绩效,超出了训练有素的表示的福利。与事先工作相比,我们发现改进的F1分数高达16%。虽然最好的基线模型是一种管道方法,但使用外部数据时最终通过端到端模型实现的最佳性能。我们提供了详细的比较和分析,例如,端到端模型能够专注于更加立列人的单词。
translated by 谷歌翻译
Collecting sufficient labeled data for spoken language understanding (SLU) is expensive and time-consuming. Recent studies achieved promising results by using pre-trained models in low-resource scenarios. Inspired by this, we aim to ask: which (if any) pre-training strategies can improve performance across SLU benchmarks? To answer this question, we employ four types of pre-trained models and their combinations for SLU. We leverage self-supervised speech and language models (LM) pre-trained on large quantities of unpaired data to extract strong speech and text representations. We also explore using supervised models pre-trained on larger external automatic speech recognition (ASR) or SLU corpora. We conduct extensive experiments on the SLU Evaluation (SLUE) benchmark and observe self-supervised pre-trained models to be more powerful, with pre-trained LM and speech models being most beneficial for the Sentiment Analysis and Named Entity Recognition task, respectively.
translated by 谷歌翻译
Self-supervised pre-trained transformers have improved the state of the art on a variety of speech tasks. Due to the quadratic time and space complexity of self-attention, they usually operate at the level of relatively short (e.g., utterance) segments. In this paper, we study the use of context, i.e., surrounding segments, during fine-tuning and propose a new approach called context-aware fine-tuning. We attach a context module on top of the last layer of a pre-trained model to encode the whole segment into a context embedding vector which is then used as an additional feature for the final prediction. During the fine-tuning stage, we introduce an auxiliary loss that encourages this context embedding vector to be similar to context vectors of surrounding segments. This allows the model to make predictions without access to these surrounding segments at inference time and requires only a tiny overhead compared to standard fine-tuned models. We evaluate the proposed approach using the SLUE and Librilight benchmarks for several downstream tasks: Automatic speech recognition (ASR), named entity recognition (NER), and sentiment analysis (SA). The results show that context-aware fine-tuning not only outperforms a standard fine-tuning baseline but also rivals a strong context injection baseline that uses neighboring speech segments during inference.
translated by 谷歌翻译
Personal assistants, automatic speech recognizers and dialogue understanding systems are becoming more critical in our interconnected digital world. A clear example is air traffic control (ATC) communications. ATC aims at guiding aircraft and controlling the airspace in a safe and optimal manner. These voice-based dialogues are carried between an air traffic controller (ATCO) and pilots via very-high frequency radio channels. In order to incorporate these novel technologies into ATC (low-resource domain), large-scale annotated datasets are required to develop the data-driven AI systems. Two examples are automatic speech recognition (ASR) and natural language understanding (NLU). In this paper, we introduce the ATCO2 corpus, a dataset that aims at fostering research on the challenging ATC field, which has lagged behind due to lack of annotated data. The ATCO2 corpus covers 1) data collection and pre-processing, 2) pseudo-annotations of speech data, and 3) extraction of ATC-related named entities. The ATCO2 corpus is split into three subsets. 1) ATCO2-test-set corpus contains 4 hours of ATC speech with manual transcripts and a subset with gold annotations for named-entity recognition (callsign, command, value). 2) The ATCO2-PL-set corpus consists of 5281 hours of unlabeled ATC data enriched with automatic transcripts from an in-domain speech recognizer, contextual information, speaker turn information, signal-to-noise ratio estimate and English language detection score per sample. Both available for purchase through ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484. 3) The ATCO2-test-set-1h corpus is a one-hour subset from the original test set corpus, that we are offering for free at https://www.atco2.org/data. We expect the ATCO2 corpus will foster research on robust ASR and NLU not only in the field of ATC communications but also in the general research community.
translated by 谷歌翻译
毒性言论,也被称为仇恨言论,被认为是今天批评在线社交媒体的重要问题之一。最近关于有毒语音检测的工作受到文本的模型,没有现有的毒性检测从口语中的出口检测。在本文中,我们提出了一种从口语中检测毒性的新口语处理任务。我们介绍了排毒,这是英语演讲的第一个公开的毒性注释数据集,来自各种公开可用的语音数据库,包括超过200万个话语。最后,我们还提供了对毒性注释的语音语料库的分析可以帮助促进E2E模型的发展,更好地捕获语音中的各种韵律线索,从而提高了口语的毒性分类。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
通过首先通过自动语音识别(ASR)转换话语,然后将输出馈送到基于文本的模型,通常通过转录语言理解(SLU)任务来解决。自我监督代表学习的最新进展旨在改善ASR组件。我们调查了是否对演讲的代表性学习已经成熟,以取代SLU中的ASR。我们将学位语音特征与Wav2Vec 2.0,最先进的ASR成绩单以及基于新型语音的名称实体识别任务的输入,是真实世界紧急呼叫和两个基于语音的命名实体识别任务的输入。现有的SLU基准。我们表明,学习的语音功能优于三种分类任务的ASR成绩单。对于机器翻译,ASR成绩单仍然是更好的选择。我们突出了Wav2VEC 2.0表示的内在稳健性,以失控的单词作为更好的性能的关键。
translated by 谷歌翻译
我们旨在使用大量自动转录语音来改进口语建模(LM)。我们利用INA(法国国家视听学院)的收藏,并在350,000小时的电视节目中应用ASR后获得19GB的文本。由此,通过微调现有的LM(FLAUBERT)或通过从头开始训练LM来培训口语模型。新模型(Flaubert-Oral)与社区共享,并评估了3个下游任务:口语理解,电视节目的分类和语音句法解析。结果表明,与最初的Flaubert版本相比,Flaubert-Oral可能是有益的,表明尽管其固有的嘈杂性,但ASR生成的文本仍可用于构建口头语言模型。
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译
已经证明了深度学习技术在各种任务中有效,特别是在语音识别系统的发展中,即旨在以一系列写词中的音频句子转录音频句子的系统。尽管该地区进展,但语音识别仍然可以被认为是困难的,特别是对于缺乏可用数据的语言,例如巴西葡萄牙语(BP)。从这个意义上讲,这项工作介绍了仅使用打开可用的音频数据的公共自动语音识别(ASR)系统的开发,从Wav2Vec 2.0 XLSR-53模型的微调,在许多语言中,通过BP数据进行了多种。最终模型在7个不同的数据集中呈现12.4%的平均误差率(在应用语言模型时10.5%)。根据我们的知识,这是开放ASR系统中BP的最佳结果。
translated by 谷歌翻译
在移动设备上的语音模型(在设备个性化)上的个性化是一个活跃的研究领域,但是通常,移动设备比配对的音频文本数据具有更多的仅文本数据。我们探索培训有关仅文本数据的个性化语言模型,该模型在推理期间用于提高该用户的语音识别性能。我们在一个用户群体的Librispeech语料库上进行了实验,并为Gutenberg Project的每个用户提供了个性化的文本数据。我们发布此特定于用户的LibrisPeech(UserLibri)数据集,以帮助未来的个性化研究。LibrisPeech音频转录对分为来自测试清洁数据集的55个用户,另外有52位用户。我们能够降低流媒体和非启动模型中的两个集合中每个用户的平均单词错误率,包括在流式传输时为更难的测试用户组的2.5改进。
translated by 谷歌翻译
在本文中,我们介绍了从包含超过80,000个小时的未标记的语音的大型数据集预处理捷克单语音频变压器方面的进展,随后使用内域数据组合对自动语音识别任务进行微调,并对模型进行微调。6000小时的跨域转录语音。我们在两个公共数据集(CommunVoice和Voxpopuli)和Malach Project中的一个非常具有挑战性的数据集中评估了各种微调设置的大量实验调色板。我们的结果表明,单语WAV2VEC 2.0模型是强大的ASR系统,它可以利用大型标记和未标记的数据集并成功与最先进的LVCSR系统竞争。此外,当没有用于目标ASR任务的培训数据时,WAV2VEC模型被证明是很好的零射门学习者。
translated by 谷歌翻译
AI研究中的基石是创建和采用标准化培训和测试数据集,以指定最新模型的进度。一个特别成功的例子是用于培训和评估英语自然语言理解(NLU)模型的胶水数据集。围绕基于BERT的语言模型的大量研究围绕着胶水中NLU任务的性能改进。为了评估其他语言的语言模型,创建了几个特定语言的胶水数据集。语音语言理解(SLU)的领域遵循了类似的轨迹。大型自我监督模型(例如WAV2VEC2)的成功实现了具有相对易于访问的未标记数据的语音模型。然后可以在SLU任务(例如出色的基准测试)上评估这些模型。在这项工作中,我们将其扩展到通过释放Indicsuperb基准测试来指示语言。具体来说,我们做出以下三项贡献。 (i)我们收集了Kathbath,其中包含来自印度203个地区的1,218个贡献者的12个印度语言的1,684小时的标记语音数据。 (ii)使用Kathbath,我们在6个语音任务中创建基准:自动语音识别,扬声器验证,说话者识别(单声道/多),语言识别,逐个示例查询以及对12种语言的关键字发现。 (iii)在发布的基准测试中,我们与常用的基线Fbank一起训练和评估不同的自我监督模型。我们表明,在大多数任务上,特定于语言的微调模型比基线更准确,包括对于语言识别任务的76 \%差距。但是,对于说话者识别,在大型数据集上训练的自我监督模型证明了一个优势。我们希望Indicsuperb有助于发展印度语言的语音语言理解模型的进步。
translated by 谷歌翻译
捷克语是一种非常特殊的语言,因为它在形式和口语形式之间的差异很大。虽然正式(书面)形式主要用于官方文件,文学和公开演讲,但通言(口语)表格在休闲演讲中被广泛使用。该差距引入了ASR系统的严重问题,尤其是在培训或评估包含大量口语语音(例如Malach Project)的数据集上的ASR模型时。在本文中,我们正在根据端到端ASR系统中的新范式解决这个问题,最近引入了自我监督的音频变压器。具体而言,我们正在研究口语语音对WAV2VEC 2.0模型性能的影响及其直接转录口语演讲的能力。我们在培训成绩单,语言模型和评估笔录中以正式和口语形式提出结果。
translated by 谷歌翻译
自动语音识别和文本到语音系统主要以监督方式培训,需要高质量,准确标记的语音数据集。在这项工作中,我们研究语音数据的常见问题,并为语音数据集的构建和交互式错误分析引入工具箱。施工工具基于K \“urzinger等。工作,并且,尽我们所知,数据集探索工具是世界上第一个这类开源工具。我们演示了如何应用这些工具来创建一个俄语语音数据集并分析现有语音数据集(多语种LibrisPeech,Mozilla Common语音)。该工具是开放的,作为Nemo框架的一部分。
translated by 谷歌翻译
最近的言语和语言技术的方法预先rain非常大型模型,用于特定任务。然而,这种大型模型的好处通常仅限于世界上少数资源丰富的语言。在这项工作中,我们对来自印度次大陆的低资源语言构建ASR系统进行多种贡献。首先,我们从各种领域策划40个印度语言的17,000小时的原始语音数据,包括教育,新闻,技术和金融。其次,使用这种原始语音数据,我们预先存在于40个印度语言的Wav2Vec样式模型的多个变体。第三,我们分析佩带的模型以查找关键特点:码本矢量的类似探测音素在语言中共享,跨层的表示是语言系列的判别,并且注意力头通常会在小型本地窗口中注意。第四,我们微调了9种语言的下游ASR模型,并在3个公共数据集上获得最先进的结果,包括非常低的资源语言,如Sinhala和Nepali。我们的工作建立了多语言预介质是建立ASR系统的有效策略,为印度次大陆的语言上不同的扬声器建立ASR系统。
translated by 谷歌翻译
We present NusaCrowd, a collaborative initiative to collect and unite existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have has brought together 137 datasets and 117 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their effectiveness has been demonstrated in multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and its local languages. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and its local languages. Our work is intended to help advance natural language processing research in under-represented languages.
translated by 谷歌翻译
We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.
translated by 谷歌翻译