通过深度学习技术的开花,完全有监督的基于骨架的动作识别取得了巨大进步。但是,这些方法需要足够的标记数据,这不容易获得。相比之下,基于自我监督的骨骼的动作识别引起了更多的关注。通过利用未标记的数据,可以学会更多可概括的功能来减轻过度拟合的问题并减少大规模标记的培训数据的需求。受到MAE的启发,我们提出了一个空间式蒙面的自动编码器框架,用于基于3D骨架的自我监管的动作识别(Skeletonmae)。在MAE的掩蔽和重建管道之后,我们利用基于骨架的编码器变压器体系结构来重建蒙版的骨架序列。一种新颖的掩蔽策略,称为时空掩蔽,是根据骨架序列的联合级别和框架级别引入的。这种预训练策略使编码器输出可推广的骨骼特征具有空间和时间依赖性。给定未掩盖的骨架序列,编码器用于动作识别任务。广泛的实验表明,我们的骨架达到了出色的性能,并优于NTU RGB+D和NTU RGB+D 120数据集的最新方法。
translated by 谷歌翻译
尽管完全监督的人类骨架序列建模成功,但使用自我监督的预训练进行骨架序列表示学习一直是一个活跃的领域,因为很难在大规模上获取特定于任务的骨骼注释。最近的研究重点是使用对比学习学习视频级别的时间和歧视性信息,但忽略了人类骨骼的层次空间时间。与视频级别的这种表面监督不同,我们提出了一种自我监督的分层预训练方案,该方案纳入了基于层次变压器的骨骼骨骼序列编码器(HI-TRS),以明确捕获空间,短期和长期和长期框架,剪辑和视频级别的时间依赖性分别。为了通过HI-TR评估提出的自我监督预训练方案,我们进行了广泛的实验,涵盖了三个基于骨架的下游任务,包括动作识别,动作检测和运动预测。根据监督和半监督评估协议,我们的方法实现了最新的性能。此外,我们证明了我们的模型在训练阶段中学到的先验知识具有强大的下游任务的转移能力。
translated by 谷歌翻译
通常需要在大型数据集上进行预训练的视频变压器,以在相对较小的数据集上实现首要性能。在本文中,我们表明视频蒙面的自动编码器(Videomae)是用于自我监督视频预训练(SSVP)的数据效率学习者。我们的启发受到了最近的ImageMae的启发,并提出了具有极高比例的定制视频管掩蔽。这种简单的设计使视频重建成为更具挑战性的自我判断任务,从而鼓励在此预训练过程中提取更有效的视频表示。我们在SSVP上获得了三个重要发现:(1)屏蔽比的比例极高(即90%至95%)仍然可以产生良好的视频性能。在时间上冗余的视频内容比图像更高的掩蔽率。 (2)视频在很小的数据集(即3K-4K视频)上取得了令人印象深刻的结果,而无需使用任何额外的数据。 (3)视频表明,数据质量比SSVP的数据数量更重要。在培训和目标数据集之间的域转移是一个重要问题。值得注意的是,我们与香草VIT的视频在动力学400上可以达到85.8%,在不使用任何额外数据的情况下,在HMDB51上的V2上有75.3%,UCF101的某些东西为75.3%,在UCF101上获得90.8%,HMDB51上的90.8%和61.1%。代码可从https://github.com/mcg-nju/videomae获得。
translated by 谷歌翻译
视频识别的标准方法通常在完整的输入视频上运行,由于视频中的时空冗余率广泛,因此效率低下。蒙版视频建模(即视频)的最新进展表明,香草视觉变压器(VIT)仅具有有限的视觉内容来补充时空上下文的能力。受到这一点的启发,我们提出了建议的蒙版动作识别(MAR),该识别(MAR)通过丢弃一定比例的补丁并仅在视频的一部分上操作来减少冗余计算。 MAR包含以下两个必不可少的组件:单元运行掩盖和桥接分类器。具体而言,为了使VIT轻松地感知细节以外的细节,并且会呈现单元格的掩蔽,以保留视频中的时空相关性,从而确保可以在同一空间位置观察到在同一空间位置的贴片,以便轻松地重建。此外,我们注意到,尽管部分观察到的特征可以重建语义上明确的隐形贴片,但它们无法实现准确的分类。为了解决这个问题,提出了一个桥接分类器,以弥合重建的VIT编码功能与专门用于分类的功能之间的语义差距。我们提出的MAR将VIT的计算成本降低了53%,并且广泛的实验表明,MAR始终以明显的边距优于现有的VIT模型。尤其是,我们发现由MAR训练的Vit-Lage胜过由标准培训方案训练的Vit-Bugue,这是通过说服Kinetics-400和某些v2数据集中的利润率,而VIT-LARGE的计算开销仅为14.5%。维特(Vit-Huge)。
translated by 谷歌翻译
捕获关节之间的依赖关系对于基于骨架的动作识别任务至关重要。变压器显示出模拟重要关节相关性的巨大潜力。然而,基于变压器的方法不能捕获帧之间的不同关节的相关性,因此相邻帧之间的不同体部(例如在长跳跃中的臂和腿)一起移动的相关性非常有用。专注于这个问题,提出了一种新的时空组元变压器(Sttformer)方法。骨架序列被分成几个部分,并且每个部分包含的几个连续帧被编码。然后提出了一种时空元组的自我关注模块,以捕获连续帧中不同关节的关系。另外,在非相邻帧之间引入特征聚合模块以增强区分类似动作的能力。与最先进的方法相比,我们的方法在两个大型数据集中实现了更好的性能。
translated by 谷歌翻译
我们提出了一个新的变压器模型,用于无监督学习骨架运动序列的任务。用于基于无监督骨骼的动作学习的现有变压器模型被了解到每个关节从相邻帧的瞬时速度没有全球运动信息。因此,该模型在学习全身运动和暂时遥远的关节方面的关注方面存在困难。此外,模型中尚未考虑人与人之间的互动。为了解决全身运动,远程时间动态和人与人之间的互动的学习,我们设计了一种全球和本地的注意机制,在其中,全球身体动作和本地关节运动相互关注。此外,我们提出了一种新颖的预处理策略,即多间隔姿势位移预测,以在不同的时间范围内学习全球和本地关注。提出的模型成功地学习了关节的局部动力学,并从运动序列中捕获了全局上下文。我们的模型优于代表性基准中明显边缘的最先进模型。代码可在https://github.com/boeun-kim/gl-transformer上找到。
translated by 谷歌翻译
由于其广泛的应用,例如自动驾驶,机器人技术等,认识到Point Cloud视频的人类行为引起了学术界和行业的极大关注。但是,当前的点云动作识别方法通常需要大量的数据,其中具有手动注释和具有较高计算成本的复杂骨干网络,这使得对现实世界应用程序不切实际。因此,本文考虑了半监督点云动作识别的任务。我们提出了一个蒙版的伪标记自动编码器(\ textbf {Maple})框架,以学习有效表示,以较少的注释以供点云动作识别。特别是,我们设计了一个新颖有效的\ textbf {de}耦合\ textbf {s} patial- \ textbf {t} emporal trans \ textbf {pert}(\ textbf {destbrof {destformer})作为maple的backbone。在Destformer中,4D点云视频的空间和时间维度被脱钩,以实现有效的自我注意,以学习长期和短期特征。此外,要从更少的注释中学习判别功能,我们设计了一个蒙版的伪标记自动编码器结构,以指导Destformer从可用框架中重建蒙面帧的功能。更重要的是,对于未标记的数据,我们从分类头中利用伪标签作为从蒙版框架重建功能的监督信号。最后,全面的实验表明,枫树在三个公共基准上取得了优异的结果,并且在MSR-ACTION3D数据集上以8.08 \%的精度优于最先进的方法。
translated by 谷歌翻译
本文介绍了一个新型的预训练的空间时间多对一(p-STMO)模型,用于2D到3D人类姿势估计任务。为了减少捕获空间和时间信息的困难,我们将此任务分为两个阶段:预训练(I期)和微调(II阶段)。在第一阶段,提出了一个自我监督的预训练子任务,称为蒙面姿势建模。输入序列中的人关节在空间和时间域中随机掩盖。利用denoising自动编码器的一般形式以恢复原始的2D姿势,并且编码器能够以这种方式捕获空间和时间依赖性。在第二阶段,将预训练的编码器加载到STMO模型并进行微调。编码器之后是一个多对一的框架聚合器,以预测当前帧中的3D姿势。尤其是,MLP块被用作STMO中的空间特征提取器,其性能比其他方法更好。此外,提出了一种时间下采样策略,以减少数据冗余。在两个基准上进行的广泛实验表明,我们的方法优于较少参数和较少计算开销的最先进方法。例如,我们的P-STMO模型在使用CPN作为输入的2D姿势时,在Human3.6M数据集上达到42.1mm MPJPE。同时,它为最新方法带来了1.5-7.1倍的速度。代码可在https://github.com/patrick-swk/p-stmo上找到。
translated by 谷歌翻译
现有的基于3D骨架的动作识别方法通过将手工制作的动作功能编码为图像格式和CNN解码,从而达到了令人印象深刻的性能。但是,这种方法在两种方面受到限制:a)手工制作的动作功能很难处理具有挑战性的动作,b)通常需要复杂的CNN模型来提高动作识别精度,这通常会发生重大计算负担。为了克服这些局限性,我们引入了一种新颖的AFE-CNN,它致力于增强基于3D骨架的动作的特征,以适应具有挑战性的动作。我们提出了功能增强从关键关节,骨向量,关键框架和时间视角的模块,因此,AFE-CNN对摄像头视图和车身大小变化更为强大,并显着提高了对挑战性动作的识别精度。此外,我们的AFE-CNN采用了轻巧的CNN模型以增强动作功能来解码图像,从而确保了比最新方法低得多的计算负担。我们在三个基于基准骨架的动作数据集上评估了AFE-CNN:NTU RGB+D,NTU RGB+D 120和UTKINECT-ACTION3D,并取得了广泛的实验结果,这表明我们对AFE-CNN的出色表现。
translated by 谷歌翻译
基于骨架的动作识别广泛用于各种区域,例如监视和人机相互作用。现有模型主要以监督方式学习,从而根据标签昂贵时可能是不可行的大规模标记数据。在本文中,我们提出了一种新的对比度重建表示学习网络(CRRL),其同时为无监督的基于骨架的动作识别捕获姿势和运动动力学。它主要由三部分组成:序列重建器,对比运动学习者和信息定影器。序列重建者通过重建学习从骨架坐标序列的表示,因此学习的表示倾向于聚焦在琐碎的姿势坐标上并且在运动学习中犹豫不决。为了增强运动的学习,对比运动学习者分别在从坐标序列和附加速度序列中学到的表示之间进行对比学习。最后,在信息定位器中,我们探讨了将序列重建器和对比运动学习者结合的各种策略,并建议通过基于知识蒸馏的融合策略同时捕获姿势和动作,从而将动作学习从对比运动学习者转移到序列中的序列重建者。在若干基准测试中,即NTU RGB + D 60,NTU RGB + D 120,CMU Mocap和NW-UCLA的实验结果证明了所提出的CRRL方法​​的承诺,到目前为止的现有方法。
translated by 谷歌翻译
基于变压器的自我监督表示方法学习方法从未标记的数据集中学习通用功能,以提供有用的网络初始化参数,用于下游任务。最近,基于掩盖3D点云数据的局部表面斑块的自我监督学习的探索还不足。在本文中,我们提出了3D点云表示学习中的蒙版自动编码器(缩写为MAE3D),这是一种新颖的自动编码范式,用于自我监督学习。我们首先将输入点云拆分为补丁,然后掩盖其中的一部分,然后使用我们的补丁嵌入模块提取未掩盖的补丁的功能。其次,我们采用贴片的MAE3D变形金刚学习点云补丁的本地功能以及补丁之间的高级上下文关系,并完成蒙版补丁的潜在表示。我们将点云重建模块与多任务损失一起完成,从而完成不完整的点云。我们在Shapenet55上进行了自我监督的预训练,并使用点云完成前文本任务,并在ModelNet40和ScanObjectnn(PB \ _t50 \ _RS,最难的变体)上微调预训练的模型。全面的实验表明,我们的MAE3D从Point Cloud补丁提取的本地功能对下游分类任务有益,表现优于最先进的方法($ 93.4 \%\%\%\%$和$ 86.2 \%$ $分类精度)。
translated by 谷歌翻译
本文显示屏蔽的自动化器(MAE)是可扩展的自我监督学习者,用于计算机愿景。我们的MAE方法很简单:我们掩盖输入图像的随机补丁并重建缺失像素。它基于两个核心设计。首先,我们开发一个不对称的编码器解码器架构,其中编码器仅在掩码的可见子集(没有掩码令牌)上,以及重量解码器,该重量解码器从潜像和掩码令牌重建原始图像。其次,我们发现掩蔽了高比例的输入图像,例如,75%,产生非凡和有意义的自我监督任务。耦合这两种设计使我们能够有效且有效地培训大型模型:我们加速培训(3倍或更多)并提高准确性。我们可扩展的方法允许学习概括的高容量模型:例如,Vanilla Vit-Maxim模型在使用Imagenet-1K数据的方法中实现最佳准确性(87.8%)。下游任务中的转移性能优于监督预培训并显示有前途的缩放行为。
translated by 谷歌翻译
Human skeleton point clouds are commonly used to automatically classify and predict the behaviour of others. In this paper, we use a contrastive self-supervised learning method, SimCLR, to learn representations that capture the semantics of skeleton point clouds. This work focuses on systematically evaluating the effects that different algorithmic decisions (including augmentations, dataset partitioning and backbone architecture) have on the learned skeleton representations. To pre-train the representations, we normalise six existing datasets to obtain more than 40 million skeleton frames. We evaluate the quality of the learned representations with three downstream tasks: skeleton reconstruction, motion prediction, and activity classification. Our results demonstrate the importance of 1) combining spatial and temporal augmentations, 2) including additional datasets for encoder training, and 3) and using a graph neural network as an encoder.
translated by 谷歌翻译
我们提出了引导蒙面的自动编码器(bootmae),这是一种新的视觉BERT预训练方法。 Bootmae用两个核心设计改进了原始的蒙版自动编码器(MAE):1)动量编码器,该动量编码器可作为额外的BERT预测目标提供在线功能; 2)试图降低编码器的压力以记住目标特定信息的靶向解码器。第一个设计的动机是通过观察到的,即使用预定的MAE提取特征,因为掩盖令牌的BERT预测目标可以实现更好的预训练性能。因此,我们与原始的MAE编码器并行添加了一个动量编码器,该编码器通过将其自己的表示作为BERT预测目标来引导预处理性能。在第二个设计中,我们将特定于目标的信息(例如,未掩盖贴片的像素值)直接传达到解码器中,以减少记住目标特定信息的编码器的压力。因此,编码器专注于语义建模,这是BERT预训练的目的,并且不需要浪费其在记住与预测目标相关的未掩盖令牌的信息时的能力。通过广泛的实验,我们的Bootmae在ImageNet-1k上获得了$ 84.2 \%$ $ $ $+0.8 \%$在同一预训练时期。 Bootmae还获得了$+1.0 $ MIOU在ADE20K上的语义细分和$+1.3 $ box ap,$+1.4 $+1.4 $ bask ap改进对象检测和可可数据集上的细分。代码在https://github.com/lightdxy/bootmae上发布。
translated by 谷歌翻译
当前的骨架动作表示方法学习的方法通常集中在受约束的场景上,其中在实验室环境中记录了视频和骨骼数据。在处理现实世界视频中估计的骨骼数据时,由于受试者和摄像机观点之间的差异很大,因此此类方法的性能差。为了解决这个问题,我们通过一种新颖的视图自动编码器介绍了自我监视的骨架动作表示学习。通过Leverage在不同的人类表演者之间进行运动重新定位作为借口任务,以便在2D或3D骨架序列的视觉表示之上删除潜在的动作特异性“运动”特征。这种“运动”功能对于骨架几何和相机视图是不变的,并允许通过辅助,跨视图和跨视图动作分类任务。我们进行了一项研究,重点是针对基于骨架的动作识别的转移学习,并在现实世界数据(例如Posetics)上进行自我监督的预训练。我们的结果表明,从VIA中学到的骨架表示足以提高最新动作分类精度,不仅在3D实验室数据集(例如NTU-RGB+D 60和NTU-RGB+D 120)上,而且还在在仅准确估计2D数据的现实数据集中,例如Toyota Smarthome,UAV-Human和Penn Action。
translated by 谷歌翻译
基于对比度学习的基于自我监督的骨架识别引起了很多关注。最近的文献表明,数据增强和大量对比度对对于学习此类表示至关重要。在本文中,我们发现,基于正常增强的直接扩展对对比对的表现有限,因为随着培训的进展,对比度对从正常数据增强到损失的贡献越小。因此,我们深入研究了对比对比对的,以进行对比学习。由混合增强策略的成功激励,通过综合新样本来改善许多任务的执行,我们提出了Skelemixclr:一种与时空的学习框架,具有时空骨架混合增强(Skelemix),以补充当前的对比样品,以补充当前的对比样品。首先,Skelemix利用骨架数据的拓扑信息将两个骨骼序列混合在一起,通过将裁切的骨骼片段(修剪视图)与其余的骨架序列(截断视图)随机梳理。其次,应用时空掩码池在特征级别上分开这两个视图。第三,我们将对比度对与这两种观点扩展。 SkelemixClr利用修剪和截断的视图来提供丰富的硬对比度对,因为它们由于图形卷积操作而涉及彼此的某些上下文信息,这使模型可以学习更好的运动表示以进行动作识别。在NTU-RGB+D,NTU120-RGB+D和PKU-MMD数据集上进行了广泛的实验表明,SkelemixClr实现了最先进的性能。代码可在https://github.com/czhaneva/skelemixclr上找到。
translated by 谷歌翻译
本文研究了基于图像的蒙版自动编码器(MAE)的简单扩展,以从音频谱图中学习自我监督的表示。在MAE中的变压器编码器编码器设计之后,我们的Audio-MAE首先编码具有较高遮罩比的音频谱图斑块,仅通过编码器层馈入非掩盖令牌。然后,解码器重新订购并解码编码的上下文,并用掩码令牌填充,以重建输入频谱图。我们发现将局部窗户注意力纳入解码器是有益的,因为音频谱图在当地时间和频带中高度相关。然后,我们在目标数据集上以较低的掩模比微调编码器。从经验上讲,音频MAE在六个音频和语音分类任务上设定了新的最先进的性能,超过了使用外部监督预训练的其他最新模型。代码和模型将在https://github.com/facebookresearch/audiomae上。
translated by 谷歌翻译
蒙面图像建模(MIM)在各种视觉任务上取得了令人鼓舞的结果。但是,学到的表示形式的有限可区分性表现出来,使一个更强大的视力学习者还有很多值得一试。为了实现这一目标,我们提出了对比度蒙面的自动编码器(CMAE),这是一种新的自我监督的预训练方法,用于学习更全面和有能力的视觉表示。通过详细统一的对比度学习(CL)和掩盖图像模型(MIM),CMAE利用了它们各自的优势,并以强大的实例可辨别性和局部的可感知来学习表示形式。具体而言,CMAE由两个分支组成,其中在线分支是不对称的编码器编码器,而目标分支是动量更新的编码器。在培训期间,在线编码器从蒙面图像的潜在表示中重建了原始图像,以学习整体特征。馈送完整图像的目标编码器通过其在线学习通过对比度学习增强了功能可区分性。为了使CL与MIM兼容,CMAE引入了两个新组件,即用于生成合理的正视图和特征解码器的像素移位,以补充对比度对的特征。多亏了这些新颖的设计,CMAE可以有效地提高了MIM对应物的表示质量和转移性能。 CMAE在图像分类,语义分割和对象检测的高度竞争基准上实现了最先进的性能。值得注意的是,CMAE-BASE在Imagenet上获得了$ 85.3 \%$ $ TOP-1的准确性和$ 52.5 \%$ MIOU的ADE20K,分别超过了$ 0.7 \%\%$ $和$ 1.8 \%$ $。代码将公开可用。
translated by 谷歌翻译
最近,自我监督的预训练在W.R.T.的各种任务上具有先进的视觉变压器。不同的数据模式,例如图像和3D点云数据。在本文中,我们探讨了基于变压器的3D网格数据分析的学习范式。由于将变压器体系结构应用于新模式通常是非平凡的,因此我们首先将视觉变压器适应3D网格数据处理,即网格变压器。具体而言,我们将网格分为几个非重叠的本地贴片,每个贴片包含相同数量的面部,并使用每个贴片中心点的3D位置形成位置嵌入。受MAE的启发,我们探讨了如何使用基于变压器的结构对3D网格数据进行预训练如何使下游3D网格分析任务受益。我们首先随机掩盖网格的一些补丁,并将损坏的网格馈入网格变形金刚。然后,通过重建蒙版补丁的信息,该网络能够学习网格数据的区分表示。因此,我们命名我们的方法meshmae,可以在网格分析任务(即分类和分割)上产生最先进或可比性的性能。此外,我们还进行了全面的消融研究,以显示我们方法中关键设计的有效性。
translated by 谷歌翻译
本文研究了视频变压器的BERT预借鉴。考虑到近期图像变形金刚的伯爵预借鉴成功,这是一个简单但值得学习的延伸。我们介绍了Decouples将视频表示学习学习的BEVT进入空间代表学习和时间动态学习。特别地,BEVT首先在图像数据上执行屏蔽图像建模,然后在视频数据上与屏蔽视频建模联合进行屏蔽图像建模。这种设计具有两个观察的动机:1)在图像数据集上学习的变压器提供了体面的空间前沿,可以缓解视频变压器的学习,这通常是从划痕训练的计算密集型的时间。 2)鉴别的线索,即空间和时间信息,需要在不同的视频中进行正确的预测,由于阶级的阶级和阶级际变化而不同。我们对三个具有挑战性的视频基准进行了广泛的实验,其中BEVT达到了非常有前途的结果。在动力学400上,哪些识别主要依赖于歧视性空间表示,BEVT达到了强大的监督基线的可比结果。在某种东西 - V2和潜水48上,其中包含依靠时间动态的视频,BEVT优于所有替代基准,分别实现了70.6%和86.7%的最新性能。
translated by 谷歌翻译