卷积神经网络已广泛应用于医学图像分割,并取得了相当大的性能。但是,性能可能会受到训练数据(源域)和测试数据(目标域)之间域间隙的显着影响。为了解决此问题,我们提出了一种基于数据操作的域泛化方法,称为域概括(AADG)的自动增强。我们的AADG框架可以有效地采样数据增强策略,从而产生新的领域并从适当的搜索空间中多样化训练集。具体而言,我们介绍了一项新的代理任务,以最大程度地提高了多个增强新颖的域之间的多样性,该域通过单位球体空间中的凹痕距离来衡量,从而使自动化的增强可牵引。对抗性训练和深入的强化学习有效地搜索了目标。全面执行了11个公开底部的底面图像数据集的定量和定性实验(四个用于视网膜血管分割,四个用于视盘和杯子和杯(OD/OC)分割(OD/OC)分割,视网膜病变细分进行了三个)。两个用于视网膜脉管系统分割的八八个数据集进一步涉及验证跨模式泛化。我们提出的AADG通过视网膜船,OD/OC和病变细分任务的相当大的利润来表现出最新的概括性能,并优于现有方法。学到的政策在经验上得到了证实为模型不平衡,并且可以很好地转移到其他模型中。源代码可在https://github.com/crazorback/aadg上找到。
translated by 谷歌翻译
对于医学图像分割,想象一下,如果仅使用源域中的MR图像训练模型,它的性能如何直接在目标域中进行CT图像?这种设置,即概括的跨模块分割,拥有其临床潜力,其比其他相关设置更具挑战性,例如域适应。为实现这一目标,我们本文通过利用在我们更广泛的分割期间利用增强的源相似和源不同的图像来提出新的双标准化模块。具体而言,给定单个源域,旨在模拟未经证明的目标域中可能的外观变化,我们首先利用非线性变换来增加源相似和源不同的图像。然后,为了充分利用这两种类型的增强,我们所提出的基于双重定量的模型采用共享骨干但独立的批量归一化层,用于单独归一化。之后,我们提出了一种基于风格的选择方案来自动选择测试阶段的适当路径。在三个公开可用的数据集上进行了广泛的实验,即Brats,跨型心脏和腹部多器官数据集表明我们的方法优于其他最先进的域概括方法。
translated by 谷歌翻译
小儿肌肉骨骼系统的临床诊断依赖于医学成像检查的分析。在医学图像处理管道中,使用深度学习算法的语义分割使人可以自动生成患者特定的三维解剖模型,这对于形态学评估至关重要。但是,小儿成像资源的稀缺性可能导致单个深层分割模型的准确性和泛化性能降低。在这项研究中,我们建议设计一个新型的多任务多任务多域学习框架,在该框架中,单个分割网络对由解剖学的不同部分产生的多个数据集进行了优化。与以前的方法不同,我们同时考虑多个强度域和分割任务来克服小儿数据的固有稀缺性,同时利用成像数据集之间的共享特征。为了进一步提高概括能力,我们从自然图像分类中采用了转移学习方案,以及旨在在共享表示中促进域特异性群集的多尺度对比正则化,以及多连接解剖学先验来执行解剖学上一致的预测。我们评估了使用脚踝,膝盖和肩关节的三个稀缺和小儿成像数据集进行骨分割的贡献。我们的结果表明,所提出的方法在骰子指标中的表现优于个人,转移和共享分割方案,并具有统计学上足够的利润。拟议的模型为智能使用成像资源和更好地管理小儿肌肉骨骼疾病提供了新的观点。
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
形状信息在医学图像中分割器官方面是强大而有价值的先验。但是,当前大多数基于深度学习的分割算法尚未考虑形状信息,这可能导致对纹理的偏见。我们旨在明确地对形状进行建模并使用它来帮助医疗图像分割。先前的方法提出了基于变异的自动编码器(VAE)模型,以了解特定器官的形状分布,并通过将其拟合到学习的形状分布中来自动评估分割预测的质量。我们旨在将VAE纳入当前的分割管道中。具体而言,我们提出了一种基于伪损失和在教师学习范式下的VAE重建损失的新的无监督域适应管道。两种损失都是同时优化的,作为回报,提高了分割任务性能。对三个公共胰腺细分数据集以及两个内部胰腺细分数据集进行了广泛的实验,显示了一致的改进,骰子分数中至少有2.8分的增益,这表明了我们方法在挑战无监督的域适应性方案中对医学图像分割的有效性。我们希望这项工作能够在医学成像中提高形状分析和几何学习。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
由于他们学习灵活的数据驱动损失能力,生成的对抗性网络(GANS)是许多半和弱监督医学图像分割方法的一个组成部分。 Gans在一组培训数据上共同优化发电机和对抗性鉴别者。在训练完成之后,通常丢弃鉴别器,并且只使用发电机推断。但我们应该丢弃鉴别者吗?在这项工作中,我们认为训练稳定的鉴别者产生了表现性的损失函数,我们可以在推理中重复使用,以检测和\ yringit {正确}分割错误。首先,我们确定关键挑战,并提出可能的解决方案,使鉴别者在推理中重新使用。然后,我们表明我们可以将具有图像重建成本(通过解码器)的判别器结合在一起以赋予测试时间训练的因果角,并进一步改进模型。我们的方法简单,提高了预先培训的GAN的测试时间性能。此外,我们表明它与标准的后处理技术兼容,它有可能用于在线持续学习。通过我们的工作,我们开设新的研究途径,以便在推理中重新使用对抗性鉴别器。我们的代码可以在https://vios-s.github.io/addersarial-test-time -Time-Tome-Torion。
translated by 谷歌翻译
深度学习模型通常遭受域移位问题,其中一个源域培训的模型不会概括到其他看不见的域。在这项工作中,我们调查了单源域泛化问题:培训一个深入的网络,在训练数据仅从一个源域中获得的训练数据中的条件,这是在医学成像应用程序中常见的情况下。我们在跨域医学图像分割的背景下解决这个问题。在这种情况下,域移主要由不同的采集过程引起。我们提出了一种简单的因果关系激发数据增强方法,使分段模型暴露于合成域移位的训练示例。具体而言,1)使得深度模型在图像强度和纹理中的差异差异,我们采用了一系列随机加权浅网络。他们使用不同的外观变换来增强训练图像。 2)此外,我们表明图像中物体之间的虚假相关性对域的鲁棒性有害。网络可能被网络作为特定于域的线索进行预测的相关性,并且它们可能会破坏看不见的域。我们通过因果干预删除这些杂散相关性。这是通过分层潜在相关对象的外表来实现的。所提出的方法在三个横域分割任务上验证:跨型号(CT-MRI)腹部图像分割,串序(BSSFP-LGE)心动MRI分割和跨中心前列腺MRI分段。当在看不见的域测试时,所提出的方法与竞争方法相比,与竞争方法相比产生一致的性能。
translated by 谷歌翻译
集成多模式数据以改善医学图像分析,最近受到了极大的关注。但是,由于模态差异,如何使用单个模型来处理来自多种模式的数据仍然是一个开放的问题。在本文中,我们提出了一种新的方案,以实现未配对多模式医学图像的更好的像素级分割。与以前采用模式特异性和模态共享模块的以前方法不同,以适应不同方式的外观差异,同时提取共同的语义信息,我们的方法基于具有精心设计的外部注意模块(EAM)的单个变压器来学习在训练阶段,结构化的语义一致性(即语义类表示及其相关性)。在实践中,可以通过分别在模态级别和图像级别实施一致性正则化来逐步实现上述结构化语义一致性。采用了提出的EAM来学习不同尺度表示的语义一致性,并且一旦模型进行了优化,就可以丢弃。因此,在测试阶段,我们只需要为所有模态预测维护一个变压器,这可以很好地平衡模型的易用性和简单性。为了证明所提出的方法的有效性,我们对两个医学图像分割方案进行了实验:(1)心脏结构分割,(2)腹部多器官分割。广泛的结果表明,所提出的方法的表现优于最新方法,甚至通过极有限的训练样本(例如1或3个注释的CT或MRI图像)以一种特定的方式来实现竞争性能。
translated by 谷歌翻译
实现域适应是有价值的,以将学习知识从标记为CT数据集传输到腹部多器官分段的目标未标记的MR DataSet。同时,非常希望避免目标数据集的高注重成本并保护源数据集的隐私。因此,我们提出了一种有效的无核心无监督域适应方法,用于跨型号腹部多器官分段而不访问源数据集。所提出的框架的过程包括两个阶段。在第一阶段,特征映射统计损失用于对准顶部分段网络中的源和目标特征的分布,并使用熵最小化损耗来鼓励高席位细分。从顶部分段网络输出的伪标签用于指导样式补偿网络生成类似源图像。从中间分割网络输出的伪标签用于监督所需模型的学习(底部分段网络)。在第二阶段,循环学习和像素自适应掩模细化用于进一步提高所需模型的性能。通过这种方法,我们在肝脏,肾脏,左肾肾脏和脾脏的分割中实现了令人满意的性能,骰子相似系数分别为0.884,0.891,0.864和0.911。此外,当存在目标注释数据时,所提出的方法可以很容易地扩展到情况。该性能在平均骰子相似度系数的0.888至0.922增加到0.888至0.922,靠近监督学习(0.929),只有一个标记的MR卷。
translated by 谷歌翻译
在本文中,我们考虑了语义分割中域概括的问题,该问题旨在仅使用标记的合成(源)数据来学习强大的模型。该模型有望在看不见的真实(目标)域上表现良好。我们的研究发现,图像样式的变化在很大程度上可以影响模型的性能,并且样式特征可以通过图像的频率平均值和标准偏差来很好地表示。受此启发,我们提出了一种新颖的对抗性增强(Advstyle)方法,该方法可以在训练过程中动态生成硬性化的图像,因此可以有效防止该模型过度适应源域。具体而言,AdvStyle将样式功能视为可学习的参数,并通过对抗培训对其进行更新。学习的对抗性风格功能用于构建用于健壮模型训练的对抗图像。 AdvStyle易于实现,并且可以轻松地应用于不同的模型。对两个合成到现实的语义分割基准的实验表明,Advstyle可以显着改善看不见的真实域的模型性能,并表明我们可以实现最新技术的状态。此外,可以将AdvStyle用于域通用图像分类,并在考虑的数据集上产生明显的改进。
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
批准(BN)均匀地基于一批图像的统计数据均匀地移动并缩放激活。但是,背景像素的强度分布通常主导了BN统计数据,因为背景占整个图像的很大比例。本文着重于通过前景像素的强度分布增强BN,这对于图像分割至关重要。我们提出了一种新的归一化策略,称为分类归一化(结合型),以根据分类统计数据使激活归一化。分类统计数据是通过动态调节属于前景的图像中的特定区域而获得的。结合型在从不同域获得的五个公共数据集展示了精确和稳健的分割结果,涵盖了复杂和可变的数据分布。这归因于结合体从医疗数据的多个领域(机构)捕获域不变的信息的能力。代码可从https://github.com/lambert-x/catenorm获得。
translated by 谷歌翻译
当测试图像提出看不见的分布时,深层分割模型通常会面临故障风险。改善模型鲁棒性针对这些风险的鲁棒性对于深层模型的大规模临床应用至关重要。在这项研究中,受到人类学习周期的启发,我们提出了一个新颖的在线反思学习框架(REFSEG),以改善细分鲁棒性。基于启用概念的反射概念,我们的refseg首先驱动了深层模型以采取行动以获得语义分割。然后,refseg触发模型以反映自身。因为使深层模型在测试过程中意识到他们的细分失败是具有挑战性的,所以RefSeg合成了从语义面具中综合的逼真的代理图像,以帮助深层模型构建直观有效的反射。该代理翻译并强调了分割缺陷。通过最大程度地提高原始输入和代理之间的结构相似性,可以改善分割鲁棒性的反射循环。 REFSEG在测试阶段运行,并且是分割模型的一般性。通过公共心脏MR数据集和两个内部大型超声数据集对三个医疗图像细分任务进行了广泛的验证,这表明我们的refseg显着提高了模型的鲁棒性,并报告了与强大竞争对手有关的最先进的表现。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
神经网络在医疗图像分割任务上的成功通常依赖于大型标记的数据集用于模型培训。但是,由于数据共享和隐私问题,获取和手动标记大型医疗图像集是资源密集的,昂贵的,有时是不切实际的。为了应对这一挑战,我们提出了一个通用的对抗数据增强框架Advchain,旨在提高培训数据对医疗图像分割任务的多样性和有效性。 AdvChain通过动态数据增强来增强数据,从而产生随机链接的光线像和几何转换,以类似于现实而又具有挑战性的成像变化以扩展训练数据。通过在培训期间共同优化数据增强模型和分割网络,可以生成具有挑战性的示例,以增强下游任务的网络可推广性。所提出的对抗数据增强不依赖生成网络,可以用作通用分割网络中的插件模块。它在计算上是有效的,适用于低声监督和半监督学习。我们在两个MR图像分割任务上分析和评估该方法:心脏分割和前列腺分割具有有限的标记数据。结果表明,所提出的方法可以减轻对标记数据的需求,同时提高模型泛化能力,表明其在医学成像应用中的实际价值。
translated by 谷歌翻译
卷积神经网络(CNN)在基准数据集上实现了出色的分割精度,在该数据集中,训练和测试集来自同一领域,但它们的性能可以大大降低看不见的域,这阻碍了CNN在许多临床场景中的部署。大多数现有作品通过收集多域数据集进行培训来改善模型外(OOD)的鲁棒性,这很昂贵,由于隐私和后勤问题,这很昂贵,可能并不总是可行的。在这项工作中,我们专注于仅使用单域数据集提高模型鲁棒性。我们提出了一个名为MaxStyle的新型数据增强框架,该框架最大程度地提高了模型OOD性能的样式增强功能。它将辅助风格的图像解码器附加到用于鲁棒特征学习和数据增强的分割网络。重要的是,MaxStyle通过通过噪音扩大样式空间并通过对抗性训练来扩大样式空间并搜索潜在特征的最差案例样式组成,从而增强了图像样式多样性和硬度的增强数据。通过对多个公共心脏和前列腺MR数据集进行了广泛的实验,我们证明了MaxStyle可显着改善对看不见的腐败的稳健性,以及在两个低 - 不知名的位点和未知的图像序列之间的共同分布变化以及共同的分布变化。和高训练数据设置。可以在https://github.com/cherise215/maxstyle上找到该代码。
translated by 谷歌翻译
旨在概括在源域中训练的模型来看不见的目标域,域泛化(DG)最近引起了很多关注。 DG的关键问题是如何防止对观察到的源极域的过度接收,因为在培训期间目标域不可用。我们调查过度拟合不仅导致未经看不见的目标域的普遍推广能力,而且在测试阶段导致不稳定的预测。在本文中,我们观察到,在训练阶段采样多个任务并在测试阶段产生增强图像,很大程度上有利于泛化性能。因此,通过处理不同视图的任务和图像,我们提出了一种新颖的多视图DG框架。具体地,在训练阶段,为了提高泛化能力,我们开发了一种多视图正则化元学习算法,该算法采用多个任务在更新模型期间产生合适的优化方向。在测试阶段,为了减轻不稳定的预测,我们利用多个增强图像来产生多视图预测,这通过熔断测试图像的不同视图的结果显着促进了模型可靠性。三个基准数据集的广泛实验验证了我们的方法优于几种最先进的方法。
translated by 谷歌翻译
一种可以推广到看不见的对比和扫描仪设置的器官分割方法可以显着减少对深度学习模型的重新培训的需求。域概括(DG)旨在实现这一目标。但是,大多数用于分割的DG方法都需要训练期间来自多个领域的训练数据。我们提出了一种针对从\ emph {single}域的数据训练的器官分割的新型对抗域的概括方法。我们通过学习对抗结构域合成器(AD)合成新域,并假定合成域覆盖了足够大的合理分布区域,以便可以从合成域中插值看不见的域。我们提出了一个共同的信息正常化程序,以实现合成域中图像之间的语义一致性,可以通过贴片级对比度学习来估计。我们评估了各种器官分割的方法,以进行看不见的模式,扫描协议和扫描仪位点。
translated by 谷歌翻译