高分辨率光触觉传感器越来越多地用于机器人学习环境中,因为它们能够捕获与试剂环境相互作用直接相关的大量数据。但是,由于触觉机器人平台的高成本,专业的仿真软件以及在不同传感器之间缺乏通用性的模拟方法,因此在该领域的研究障碍很高。在这封信中,我们将触觉健身房的模拟器扩展到两种最受欢迎​​的类型类型的三个新的光学触觉传感器(Tactip,Digit和Digitac),分别是Gelsight Style(基于图像遮蔽)和Tactip Style(基于标记)。我们证明,尽管实际触觉图像之间存在显着差异,但可以与这三个不同的传感器一起使用单个SIM到实现的方法,以实现强大的现实性能。此外,我们通过将其调整为廉价的4道机器人组来降低对拟议任务的进入障碍,从而进一步使该基准的传播。我们在三个需要触摸感的身体相互交互的任务上验证了扩展环境:对象推动,边缘跟随和表面跟随。我们实验验证的结果突出了这些传感器之间的一些差异,这可能有助于未来的研究人员选择并自定义触觉传感器的物理特征,以进行不同的操纵场景。
translated by 谷歌翻译
仿真最近已成为深度加强学习,以安全有效地从视觉和预防性投入获取一般和复杂的控制政策的关键。尽管它与环境互动直接关系,但通常认为触觉信息通常不会被认为。在这项工作中,我们展示了一套针对触觉机器人和加强学习量身定制的模拟环境。提供了一种简单且快速的模拟光学触觉传感器的方法,其中高分辨率接触几何形状表示为深度图像。近端策略优化(PPO)用于学习所有考虑任务的成功策略。数据驱动方法能够将实际触觉传感器的当前状态转换为对应的模拟深度图像。此策略在物理机器人上实时控制循环中实现,以演示零拍摄的SIM-TO-REAL策略转移,以触摸感的几个物理交互式任务。
translated by 谷歌翻译
深度学习与高分辨率的触觉传感相结合可能导致高度强大的灵巧机器人。但是,由于专业设备和专业知识,进度很慢。数字触觉传感器可使用Gelsight型传感器提供低成本的高分辨率触摸。在这里,我们将数字定制为基于柔软仿生光学触觉传感器的Tactip家族具有3D打印的传感表面。 Digit-Tactip(Digitac)可以在这些不同的触觉传感器类型之间进行直接比较。为了进行此比较,我们引入了一个触觉机器人系统,该机器人系统包括桌面臂,坐骑和3D打印的测试对象。我们将触觉伺服器控制与Posenet深度学习模型一起比较数字,Digitac和Tactip,以在3D形状上进行边缘和表面跟随。这三个传感器在姿势预测上的性能类似,但是它们的构造导致伺服控制的性能不同,为研究人员选择或创新触觉传感器提供了指导。复制此研究的所有硬件和软件将公开发布。
translated by 谷歌翻译
机器人仿真一直是数据驱动的操作任务的重要工具。但是,大多数现有的仿真框架都缺乏与触觉传感器的物理相互作用的高效和准确模型,也没有逼真的触觉模拟。这使得基于触觉的操纵任务的SIM转交付仍然具有挑战性。在这项工作中,我们通过建模接触物理学来整合机器人动力学和基于视觉的触觉传感器的模拟。该触点模型使用机器人最终效应器上的模拟接触力来告知逼真的触觉输出。为了消除SIM到真实传输差距,我们使用现实世界数据校准了机器人动力学,接触模型和触觉光学模拟器的物理模拟器,然后我们在零摄像机上演示了系统的有效性 - 真实掌握稳定性预测任务,在各种对象上,我们达到平均准确性为90.7%。实验揭示了将我们的模拟框架应用于更复杂的操纵任务的潜力。我们在https://github.com/cmurobotouch/taxim/tree/taxim-robot上开放仿真框架。
translated by 谷歌翻译
视觉的触觉传感器由于经济实惠的高分辨率摄像机和成功的计算机视觉技术而被出现为机器人触摸的有希望的方法。但是,它们的物理设计和他们提供的信息尚不符合真实应用的要求。我们提供了一种名为Insight的强大,柔软,低成本,视觉拇指大小的3D触觉传感器:它不断在其整个圆锥形感测表面上提供定向力分布图。围绕内部单眼相机构造,传感器仅在刚性框架上仅成型一层弹性体,以保证灵敏度,鲁棒性和软接触。此外,Insight是第一个使用准直器将光度立体声和结构光混合的系统来检测其易于更换柔性外壳的3D变形。通过将图像映射到3D接触力的空间分布(正常和剪切)的深神经网络推断力信息。洞察力在0.4毫米的总空间分辨率,力量幅度精度约为0.03 n,并且对于具有不同接触面积的多个不同触点,在0.03-2 n的范围内的5度大约5度的力方向精度。呈现的硬件和软件设计概念可以转移到各种机器人部件。
translated by 谷歌翻译
触觉感应是执行灵巧操纵任务的机器人的基本能力。虽然相机,LIDAR和其他远程传感器可以在全球和立即评估场景,但触觉传感器可以减少它们的测量不确定性,并在往复对象和机器人之间获得局部物理交互的信息,这通常不能通过遥感。触觉传感器可以分为两个主要类别:电子触觉皮肤和基于相机的光学触觉传感器。前者是薄薄的并且可以安装在不同的身体部位上,而后者呈现更棱柱形状并具有更高的感测分辨率,具有良好的优势,可以用作机器人手指或指尖。这种光学触觉传感器之一是我们的Geltip传感器,其成形为手指,并且可以在其表面的任何位置感接触。这样,Geltip传感器能够从所有方向上检测触点,如人的手指。为了捕获这些触点,它使用安装在其基部的相机来跟踪覆盖其空心,刚性和透明体的不透明弹性体的变形。由于这种设计,配备盖施电流传感器的夹具能够同时监测其掌握内外的触点。使用该传感器进行的实验表明了触点是如何定位的,更重要的是,利用杂波中的Dexterous操纵任务中的全面触摸感测的优点,甚至可能是必要的,其中触点可能发生在手指的任何位置。可以在HTTPS://Danfergo.github.io/geltip/中找到制造Geltip传感器的所有材料
translated by 谷歌翻译
对3D对象的触觉识别仍然是一项具有挑战性的任务。与2D形状相比,3D表面的复杂几何形状需要更丰富的触觉信号,更灵活的动作和更高级的编码技术。在这项工作中,我们提出了Tandem3D,该方法将共同训练框架应用于探索和决策的框架对3D对象识别具有触觉信号。从我们以前的工作开始,该工作引入了2D识别问题的共同训练范式,我们引入了许多进步,使我们能够扩展到3D。串联3D基于一个新颖的编码器,该编码器使用PointNet ++从触点位置和正态构建3D对象表示。此外,通过启用6DOF运动,Tandem3D以高效率探索并收集歧视性触摸信息。我们的方法完全在模拟中训练,并通过现实世界实验进行验证。与最先进的基线相比,串联3D在识别3D对象方面达到了更高的准确性和较低的动作,并且也证明对不同类型和数量的传感器噪声更为强大。视频可在https://jxu.ai/tandem3d上获得。
translated by 谷歌翻译
能够与环境进行物理相互作用的新型航空车的最新发展导致了新的应用,例如基于接触的检查。这些任务要求机器人系统将力与部分知名的环境交换,这可能包含不确定性,包括未知的空间变化摩擦特性和表面几何形状的不连续变化。找到对这些环境不确定性的强大控制策略仍然是一个公开挑战。本文提出了一种基于学习的自适应控制策略,用于航空滑动任务。特别是,基于当前控制信号,本体感受测量和触觉感应的策略,实时调整了标准阻抗控制器的收益。在学生教师学习设置中,该策略通过简化执行器动力进行了模拟培训。使用倾斜臂全向飞行器验证了所提出方法的现实性能。所提出的控制器结构结合了数据驱动和基于模型的控制方法,使我们的方法能够直接转移并不从模拟转移到真实平台。与微调状态的相互作用控制方法相比,我们达到了减少的跟踪误差和改善的干扰排斥反应。
translated by 谷歌翻译
我们研究了复杂几何物体的机器人堆叠问题。我们提出了一个挑战和多样化的这些物体,这些物体被精心设计,以便要求超出简单的“拾取”解决方案之外的策略。我们的方法是加强学习(RL)方法与基于视觉的互动政策蒸馏和模拟到现实转移相结合。我们的学习政策可以有效地处理现实世界中的多个对象组合,并展示各种各样的堆叠技能。在一个大型的实验研究中,我们调查在模拟中学习这种基于视觉的基于视觉的代理的选择,以及对真实机器人的最佳转移产生了什么影响。然后,我们利用这些策略收集的数据并通过离线RL改善它们。我们工作的视频和博客文章作为补充材料提供。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
Figure 1: A five-fingered humanoid hand trained with reinforcement learning manipulating a block from an initial configuration to a goal configuration using vision for sensing.
translated by 谷歌翻译
最近,深度加固学习(RL)在机器人操作应用中表现出了一些令人印象深刻的成功。但是,由于样本效率和安全性问题,现实世界中的培训机器人是不平凡的。提出了SIM到现实的转移来解决上述问题,但引入了一个名为“现实差距”的新问题。在这项工作中,我们通过使用单个摄像头的输入来解决上述问题,为基于视觉的组装任务引入SIM模型学习框架,并在模拟环境中进行培训。我们提出了一种基于循环一致的生成对抗网络(CycleGAN)和力量控制转移方法来弥合现实差距的域适应方法。我们证明,在模拟环境中训练有训练的拟议框架可以成功地转移到真实的孔洞设置中。
translated by 谷歌翻译
仿真广泛用于系统验证和大规模数据收集的机器人。然而,模拟传感器包括触觉传感器,这是一个长期存在的挑战。在本文中,我们提出了针对视觉触觉传感器的税法,逼真和高速仿真模型,Gelsight。凝胶传感器使用一块软弹性体作为接触的介质,并嵌入光学结构以捕获弹性体的变形,其在接触表面处施加的几何形状和力。我们提出了一种基于示例性的模拟eGelight方法:我们使用多项式查找表模拟对变形的光学响应。此表将变形几何形状映射到由嵌入式摄像机采样的像素强度。为了模拟由弹性体的表面拉伸引起的表面标记的运动,我们应用线性弹性变形理论和叠加原理。仿真模型校准,具有来自真实传感器的少于100个数据点。基于示例的方法使模型能够轻松地迁移到其他裸体传感器或其变化。据我们所知,我们的仿真框架是第一个包含从弹性体变形的标记运动场仿真以及光学仿真,创造了全面和计算的触觉模拟框架。实验表明,与现有工作相比,我们的光学仿真具有最低的像素 - 方面强度误差,并可以在线计算在线计算。我们的代码和补充材料在https://github.com/cmurobotouch/taxim开放。
translated by 谷歌翻译
触摸感在使人类能够理解和与周围环境互动方面发挥着关键作用。对于机器人,触觉感应也是不可替代的。在与物体交互时,触觉传感器为机器人提供了理解物体的有用信息,例如分布式压力,温度,振动和纹理。在机器人抓住期间,视力通常由其最终效应器封闭,而触觉感应可以测量视觉无法访问的区域。在过去的几十年中,已经为机器人开发了许多触觉传感器,并用于不同的机器人任务。在本章中,我们专注于使用触觉对机器人抓握的触觉,并研究近期对物质性质的触觉趋势。我们首先讨论了术语,即形状,姿势和材料特性对三个重要的物体特性的触觉感知。然后,我们通过触觉感应审查抓握稳定性预测的最新发展。在这些作品中,我们确定了在机器人抓握中协调视觉和触觉感应的要求。为了证明使用触觉传感来提高视觉感知,介绍了我们最近的抗议重建触觉触觉感知的发展。在所提出的框架中,首先利用相机视觉的大型接收领域以便快速搜索含有裂缝的候选区域,然后使用高分辨率光学触觉传感器来检查这些候选区域并重建精制的裂缝形状。实验表明,我们所提出的方法可以实现0.82mm至0.24mm的平均距离误差的显着降低,以便重建。最后,我们在讨论了对机器人任务中施加触觉感应的公开问题和未来方向的讨论。
translated by 谷歌翻译
我们解决了使四足机器人能够使用强化学习在现实世界中执行精确的射击技巧的问题。开发算法使腿部机器人能够向给定的目标射击足球,这是一个具有挑战性的问题,它将机器人运动控制和计划结合到一项任务中。为了解决这个问题,我们需要考虑控制动态腿部机器人期间的动态限制和运动稳定性。此外,我们需要考虑运动计划,以在地面上射击难以模拟的可变形球,并不确定摩擦到所需的位置。在本文中,我们提出了一个层次结构框架,该框架利用深厚的强化学习来训练(a)强大的运动控制政策,可以跟踪任意动议,以及(b)一项计划政策,以决定所需的踢球运动将足球射击到目标。我们将提议的框架部署在A1四足动物机器人上,使其能够将球准确地射击到现实世界中的随机目标。
translated by 谷歌翻译
人类广泛利用视觉和触摸作为互补的感官,视觉提供有关场景的全球信息,并在操纵过程中触摸当地信息而不会受到阻塞。在这项工作中,我们提出了一个新颖的框架,用于以一种自我监督的方式学习多任务视觉执行表示。我们设计了一种机制,该机制使机器人能够自主收集空间对齐的视觉和触觉数据,这是下游任务的关键属性。然后,我们使用交叉模式对比损失训练视觉和触觉编码器将这些配对的感觉输入嵌入共享潜在空间中。对学习的表示形式进行评估,而无需对5个感知和控制任务进行微调,涉及可变形表面:触觉分类,接触定位,异常检测(例如,手术幻影肿瘤触诊),触觉搜索,例如,视觉疑问(例如,在遮挡的情况下,都可以从视觉询问中进行触觉搜索),以及沿布边缘和电缆的触觉伺服。博学的表示形式在毛巾功能分类上达到了80%的成功率,手术材料中异常检测的平均成功率为73%,视觉引导触觉搜索的平均成功率和87.8%的平均伺服距离沿电缆和服装的平均伺服距离为87.8%。接缝。这些结果表明,学习的表示形式的灵活性,并朝着对机器人控制的任务不合时宜的视觉表达表示迈出了一步。
translated by 谷歌翻译
当没有光学信息可用时,在不确定环境下的机器人探索具有挑战性。在本文中,我们提出了一种自主解决方案,即仅基于触觉感测,探索一个未知的任务空间。我们首先根据MEMS晴雨表设备设计了晶须传感器。该传感器可以通过非侵入性与环境进行交互来获取联系信息。该传感器伴随着一种计划技术,可以通过使用触觉感知来产生探索轨迹。该技术依赖于触觉探索的混合政策,其中包括用于对象搜索的主动信息路径计划,以及用于轮廓跟踪的反应性HOPF振荡器。结果表明,混合勘探政策可以提高对象发现的效率。最后,通过细分对象和分类来促进场景的理解。开发了一个分类器,以根据晶须传感器收集的几何特征识别对象类别。这种方法证明了晶须传感器以及触觉智能,可以提供足够的判别特征来区分对象。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
在机器学习中使用大型数据集已导致出色的结果,在某些情况下,在机器上认为不可能的任务中的人数优于人类。但是,在处理身体上的互动任务时,实现人类水平的表现,例如,在接触良好的机器人操作中,仍然是一个巨大的挑战。众所周知,规范笛卡尔阻抗进行此类行动对于成功执行至关重要。加强学习(RL)之类的方法可能是解决此类问题的有希望的范式。更确切地说,在解决新任务具有巨大潜力时,使用任务不足的专家演示的方法可以利用大型数据集。但是,现有的数据收集系统是昂贵,复杂的,或者不允许进行阻抗调节。这项工作是朝着数据收集框架迈出的第一步,适合收集与使用新颖的动作空间的RL问题公式相容的基于阻抗的专家演示的大型数据集。该框架是根据对机器人操纵的可用数据收集框架进行广泛分析后根据要求设计的。结果是一个低成本且开放的远程阻抗框架,它使人类专家能够展示接触式任务。
translated by 谷歌翻译
用机器人手操纵物体是一项复杂的任务。不仅需要协调手指,而且机器人最终效应器的姿势也需要协调。使用人类的运动演示是指导机器人行为的直观和数据效率的方式。我们提出了一个具有自动实施例映射的模块化框架,以将记录的人体运动转移到机器人系统中。在这项工作中,我们使用运动捕获来记录人类运动。我们在八项具有挑战性的任务上评估了我们的方法,其中机器人手需要掌握和操纵可变形或小且脆弱的物体。我们测试了模拟和实际机器人中的轨迹子集,并且整体成功率是一致的。
translated by 谷歌翻译