签名的网络使我们能够对双方的关系和互动进行建模,例如朋友/敌人,支持/反对等。这些交互通常在真实数据集中是暂时的,在这些数据集中,节点和边缘会随时间出现。因此,学习签名网络的动态对于有效预测未来联系的符号和强度至关重要。现有的作品模型签名网络或动态网络,但并非都在一起。在这项工作中,我们研究了动态签名的网络,在这些网络中,链接都随时间签名和演变。我们的模型使用内存模块和平衡聚合(因此,名称SEMBA)学习了签名的链接的演变。每个节点都维护两个单独的内存编码,以实现正相互作用和负相互作用。在新边缘的到来时,每个交互节点汇总了此签名的信息,并利用平衡理论。节点嵌入是使用更新的内存生成的,然后将其用于训练多个下游任务,包括链接标志预测和链接权重预测。我们的结果表明,SEMBA的表现优于所有基准,即通过获得AUC增长8%,而FPR降低了50%。关于预测签名权重的任务的结果表明,SEMBA将平方误差降低了9%,同时降低了KL-Divergence对预测签名权重的分布的减少69%。
translated by 谷歌翻译
时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文提格的研究建议[24]。
translated by 谷歌翻译
时间网络已被广泛用于建模现实世界中的复杂系统,例如金融系统和电子商务系统。在时间网络中,一组节点的联合邻居通常提供至关重要的结构信息,以预测它们是否可以在一定时间相互作用。但是,最新的时间网络的表示学习方法通​​常无法提取此类信息或取决于极具耗时的特征构建方法。为了解决该问题,这项工作提出了邻里感知的时间网络模型(NAT)。对于网络中的每个节点,NAT放弃了常用的基于单个矢量的表示,同时采用了新颖的词典型邻域表示。这样的词典表示记录了一组相邻节点作为键,并可以快速构建多个节点联合邻域的结构特征。我们还设计了称为N-CACHE的专用数据结构,以支持GPU上这些字典表示的并行访问和更新。 NAT在七个现实世界大规模的时间网络上进行了评估。 NAT不仅胜过所有尖端基线的平均分别为5.9%和6.0%,分别具有换电和电感链路预测准确性,而且还可以通过对采用联合结构特征和实现的基准的加速提高4.1-76.7来保持可扩展性。对基线无法采用这些功能的基线的加速1.6-4.0。代码的链接:https://github.com/graph-com/neighborhood-aware-ware-temporal-network。
translated by 谷歌翻译
许多现实世界图包含时域信息。时间图神经网络在生成的动态节点嵌入中捕获时间信息以及结构和上下文信息。研究人员表明,这些嵌入在许多不同的任务中实现了最先进的表现。在这项工作中,我们提出了TGL,这是一个用于大规模脱机时间图神经网络训练的统一框架,用户可以使用简单的配置文件组成各种时间图神经网络。 TGL包括五个主要组件,一个临时采样器,一个邮箱,节点内存模块,存储器更新程序和消息传递引擎。我们设计了临时CSR数据结构和平行采样器,以有效地对颞邻邻居进行制作微型批次。我们提出了一种新颖的随机块调度技术,该技术可以减轻大批量训练时过时的节点存储器的问题。为了解决仅在小规模数据集上评估当前TGNN的局限性,我们介绍了两个具有0.2亿和13亿个时间边缘的大型现实世界数据集。我们在四个具有单个GPU的小规模数据集上评估了TGL的性能,以及两个具有多个GPU的大数据集,用于链接预测和节点分类任务。我们将TGL与五种方法的开源代码进行了比较,并表明TGL平均达到13倍的速度可实现相似或更高的精度。与基准相比,我们的时间平行采样器在多核CPU上平均达到173倍加速。在4-GPU机器上,TGL可以在1-10小时内训练一个超过10亿个时间边缘的时期。据我们所知,这是第一项提出了一个关于多个GPU的大规模时间图神经网络培训的一般框架的工作。
translated by 谷歌翻译
图形结构化数据通常在自然界中具有动态字符,例如,在许多现实世界中,链接和节点的添加。近年来见证了对这种图形数据进行建模的动态图神经网络所支付的越来越多的注意力,几乎所有现有方法都假设,当建立新的链接时,应通过学习时间动态来传播邻居节点的嵌入。新的信息。但是,这种方法遭受了这样的限制,如果新连接引入的节点包含嘈杂的信息,那么将其知识传播到其他节点是不可靠的,甚至导致模型崩溃。在本文中,我们提出了Adanet:通过增强动态图神经网络的强化知识适应框架。与以前的方法相反,一旦添加了新链接,就立即更新邻居节点的嵌入方式,Adanet试图自适应地确定由于涉及的新链接而应更新哪些节点。考虑到是否更新一个邻居节点的嵌入的决定将对其他邻居节点产生很大的影响,因此,我们将节点更新的选择作为序列决策问题,并通过强化学习解决此问题。通过这种方式,我们可以将知识自适应地传播到其他节点,以学习健壮的节点嵌入表示。据我们所知,我们的方法构成了通过强化学习的动态图神经网络来探索强大知识适应的首次尝试。在三个基准数据集上进行的广泛实验表明,Adanet可以实现最新的性能。此外,我们通过在数据集中添加不同程度的噪声来执行实验,并定量和定性地说明ADANET的鲁棒性。
translated by 谷歌翻译
图神经网络(GNN)已成功应用于许多真实世界静态图。但是,由于模型设计,评估设置和训练策略的局限性,静态图的成功尚未完全转化为动态图。具体而言,现有的动态GNN并不包含静态GNN的最新设计,从而限制了其性能。动态GNN的当前评估设置不能完全反映动态图的不断发展的性质。最后,用于动态GNN的常用训练方法是不可扩展的。在这里,我们提出了Roland,这是现实世界动态图的有效图表学习框架。 Roland框架的核心可以帮助研究人员轻松地将任何静态GNN重新用于动态图。我们的见解是将不同GNN层的节点嵌入视为分层节点状态,然后随着时间的推移将其反复更新。然后,我们为动态图引入了实时更高的评估设置,该设置模仿了现实世界中的用例,其中GNN正在做出预测并在滚动基础上进行更新。最后,我们通过增量训练和元学习提出了一种可扩展有效的训练方法,以动态GNN。我们在未来链接预测任务上对八个不同的动态图数据集进行了实验。在三个数据集的标准评估设置下,使用Roland框架建立的模型平均相对平均互惠等级(MRR)的平均相对平均值(MRR)改进。我们发现对较大数据集的最先进的基线经历了不可存储的错误,而Roland可以轻松地扩展到5600万个边缘的动态图。在使用ROLAND训练策略重新实现这些基准线后,Roland模型平均相对于基线相对相对改善了15.5%。
translated by 谷歌翻译
许多实际关系系统,如社交网络和生物系统,包含动态相互作用。在学习动态图形表示时,必须采用连续的时间信息和几何结构。主流工作通过消息传递网络(例如,GCN,GAT)实现拓扑嵌入。另一方面,时间演进通常通过在栅极机构中具有方便信息过滤的存储单元(例如,LSTM或GU)来表达。但是,由于过度复杂的编码,这种设计可以防止大规模的输入序列。这项工作从自我关注的哲学中学习,并提出了一种高效的基于频谱的神经单元,采用信息的远程时间交互。发达的频谱窗口单元(SWINIT)模型预测了具有保证效率的可扩展动态图形。该架构与一些构成随机SVD,MLP和图形帧卷积的一些简单的有效计算块组装。 SVD加MLP模块编码动态图事件的长期特征演进。帧卷积中的快速帧图形变换嵌入了结构动态。两种策略都提高了模型对可扩展分析的能力。特别地,迭代的SVD近似度将注意力的计算复杂性缩小到具有n个边缘和D边缘特征的动态图形的关注的计算复杂性,并且帧卷积的多尺度变换允许在网络训练中具有足够的可扩展性。我们的Swinit在各种在线连续时间动态图表学习任务中实现了最先进的性能,而与基线方法相比,可学习参数的数量可达七倍。
translated by 谷歌翻译
Graphs are ubiquitous in nature and can therefore serve as models for many practical but also theoretical problems. For this purpose, they can be defined as many different types which suitably reflect the individual contexts of the represented problem. To address cutting-edge problems based on graph data, the research field of Graph Neural Networks (GNNs) has emerged. Despite the field's youth and the speed at which new models are developed, many recent surveys have been published to keep track of them. Nevertheless, it has not yet been gathered which GNN can process what kind of graph types. In this survey, we give a detailed overview of already existing GNNs and, unlike previous surveys, categorize them according to their ability to handle different graph types and properties. We consider GNNs operating on static and dynamic graphs of different structural constitutions, with or without node or edge attributes. Moreover, we distinguish between GNN models for discrete-time or continuous-time dynamic graphs and group the models according to their architecture. We find that there are still graph types that are not or only rarely covered by existing GNN models. We point out where models are missing and give potential reasons for their absence.
translated by 谷歌翻译
Node classification for graph-structured data aims to classify nodes whose labels are unknown. While studies on static graphs are prevalent, few studies have focused on dynamic graph node classification. Node classification on dynamic graphs is challenging for two reasons. First, the model needs to capture both structural and temporal information, particularly on dynamic graphs with a long history and require large receptive fields. Second, model scalability becomes a significant concern as the size of the dynamic graph increases. To address these problems, we propose the Time Augmented Dynamic Graph Neural Network (TADGNN) framework. TADGNN consists of two modules: 1) a time augmentation module that captures the temporal evolution of nodes across time structurally, creating a time-augmented spatio-temporal graph, and 2) an information propagation module that learns the dynamic representations for each node across time using the constructed time-augmented graph. We perform node classification experiments on four dynamic graph benchmarks. Experimental results demonstrate that TADGNN framework outperforms several static and dynamic state-of-the-art (SOTA) GNN models while demonstrating superior scalability. We also conduct theoretical and empirical analyses to validate the efficiency of the proposed method. Our code is available at https://sites.google.com/view/tadgnn.
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质的假设,并设计基于相似性的启发式方法或表示学习方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,并且两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能是不同的,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示形式,每个矢量捕获一个因子上的节点的潜在表示,这铺平了一种方法来模拟异性图中的链接形成,从而导致更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,该问题是在异性图上进行链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来学习以促进链接预测来学习解开的表示形式。在13个现实世界数据集上进行的广泛实验证明了Disenlink对异性恋和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
translated by 谷歌翻译
网络在许多现实世界应用程序中无处不在(例如,编码信任/不信任关系的社交网络,由时间序列数据引起的相关网络)。尽管许多网络都是签名或指示的,或者两者都在图形神经网络(GNN)上缺少统一的软件包,专门为签名和定向网络设计。在本文中,我们提出了Pytorch几何签名的指示,这是一个填补此空白的软件包。在此过程中,我们还提供了简短的审查调查,以分析签名和定向网络的分析,讨论相关实验中使用的数据,提供提出的方法概述,并通过实验评估实施方法。深度学习框架包括易于使用的GNN模型,合成和现实世界数据,以及针对签名和定向网络的特定任务评估指标和损失功能。作为Pytorch几何形状的扩展库,我们提出的软件由开源版本,详细文档,连续集成,单位测试和代码覆盖范围检查维护。我们的代码可在\ url {https://github.com/sherylhyx/pytorch_geometric_signed_directed}上公开获得。
translated by 谷歌翻译
A key challenge in social network analysis is understanding the position, or stance, of people in the graph on a large set of topics. While past work has modeled (dis)agreement in social networks using signed graphs, these approaches have not modeled agreement patterns across a range of correlated topics. For instance, disagreement on one topic may make disagreement(or agreement) more likely for related topics. We propose the Stance Embeddings Model(SEM), which jointly learns embeddings for each user and topic in signed social graphs with distinct edge types for each topic. By jointly learning user and topic embeddings, SEM is able to perform cold-start topic stance detection, predicting the stance of a user on topics for which we have not observed their engagement. We demonstrate the effectiveness of SEM using two large-scale Twitter signed graph datasets we open-source. One dataset, TwitterSG, labels (dis)agreements using engagements between users via tweets to derive topic-informed, signed edges. The other, BirdwatchSG, leverages community reports on misinformation and misleading content. On TwitterSG and BirdwatchSG, SEM shows a 39% and 26% error reduction respectively against strong baselines.
translated by 谷歌翻译
动态图中的表示学习是一个具有挑战性的问题,因为图形和节点功能的拓扑在不同的时间内变化。这要求模型能够有效地捕获图形拓扑信息和时间信息。大多数现有的作品都是基于经常性神经网络(RNN)的作品,用于确切的动态图形的时间信息,因此它们继承了RNN的相同缺点。在本文中,我们提出了在动态图表(LEDG)上的发展 - 一种新的算法,共同学习图信息和时间信息。具体而言,我们的方法利用基于梯度的元学习来学习更新的策略,这些策略与快照上的RNN具有更好的泛化能力。它是模型 - 不可知的,因此可以在动态图表上培训基于图形神经网络(GNN)的任何消息。为了增强代表性权力,我们将嵌入的嵌入嵌入到时间嵌入和图形内在嵌入。我们对各种数据集和下游任务进行实验,实验结果验证了我们方法的有效性。
translated by 谷歌翻译
最近从静态图中学习了最近的成功,但是尽管存在普遍存在,但从时间不断发展的图表中学习仍然具有挑战性。我们为特定于动态图的链接预测设计了新的,更严格的评估程序,这些预测反映了现实世界的考虑,并且可以更好地比较不同的方法的优势和劣势。特别是,我们创建了两种可视化技术,以了解随着时间的推移的重复图案。他们表明,以后的时间步骤重复了许多边缘。因此,我们提出了一个称为EdgeBank的纯记忆基线。它在多个设置中实现了令人惊讶的强劲性能,部分原因是当前评估设置中使用的简单负面边缘。因此,我们引入了另外两种具有挑战性的负面抽样策略,可以改善鲁棒性,并可以更好地匹配现实世界的应用程序。最后,我们从当前基准中缺少各种域中介绍了五个新的动态图数据集,从而为未来的研究提供了新的挑战和机会。
translated by 谷歌翻译
时间图神经网络(时间GNN)已被广泛研究,在多个预测任务上达到了最新的结果。大多数先前作品采用的一种常见方法是应用一个层,该图层汇总了节点历史邻居的信息。朝着不同的研究方向迈进,在这项工作中,我们提出了TBDFS - 一种新颖的时间GNN架构。 TBDF应用一个层,该图层有效地将信息从时间路径聚集到图中的给定(目标)节点。对于每个给定的节点,将聚集分为两个阶段:(1)在该节点中结束的每个时间路径的单个表示,并且(2)所有路径表示都汇总为最终节点表示。总体而言,我们的目标不是在节点中添加新信息,而是从新角度观察相同的确切信息。这使我们的模型可以直接观察到面向路径的模式,而不是面向邻里的模式。与以前的作品中应用的流行呼吸优先搜索(BFS)遍历相比,这可以认为是时间图上的深度优先搜索(DFS)遍历。我们通过多个链接预测任务评估了TBDF,并显示出与最先进的基线相比的表现。据我们所知,我们是第一个应用Perimal-DFS神经网络的人。
translated by 谷歌翻译
图形卷积网络(GCN)及其变体是为仅包含正链的无符号图设计的。许多现有的GCN来自位于(未签名)图的信号的光谱域分析,在每个卷积层中,它们对输入特征进行低通滤波,然后进行可学习的线性转换。它们扩展到具有正面和负面链接的签名图,引发了多个问题,包括计算不规则性和模棱两可的频率解释,从而使计算有效的低通滤波器的设计具有挑战性。在本文中,我们通过签名图的光谱分析来解决这些问题,并提出了两个不同的图形神经网络,一个人仅保留低频信息,并且还保留了高频信息。我们进一步引入了磁性签名的拉普拉斯式,并使用其特征成分进行定向签名图的光谱分析。我们在签名图上测试了节点分类的方法,并链接符号预测任务并实现最先进的性能。
translated by 谷歌翻译
由于其独立性与标签及其稳健性的独立性,自我监督的学习最近引起了很多关注。目前关于本主题的研究主要使用诸如图形结构的静态信息,但不能很好地捕获诸如边缘时间戳的动态信息。现实图形通常是动态的,这意味着节点之间的交互发生在特定时间。本文提出了一种自我监督的动态图形表示学习框架(DYSUBC),其定义了一个时间子图对比学学习任务,以同时学习动态图的结构和进化特征。具体地,首先提出了一种新的时间子图采样策略,其将动态图的每个节点作为中心节点提出,并使用邻域结构和边缘时间戳来采样相应的时间子图。然后根据在编码每个子图中的节点之后,根据中心节点上的邻域节点的影响设计子图表示功能。最后,定义了结构和时间对比损失,以最大化节点表示和时间子图表示之间的互信息。五个现实数据集的实验表明(1)DySubc比下游链路预测任务中的两个图形对比学习模型和四个动态图形表示学习模型更好地表现出更好的相关基线,(2)使用时间信息不能使用只有更有效的子图,还可以通过时间对比损失来学习更好的表示。
translated by 谷歌翻译
动态图形表示学习是具有广泛应用程序的重要任务。以前关于动态图形学习的方法通常对嘈杂的图形信息(如缺失或虚假连接)敏感,可以产生退化的性能和泛化。为了克服这一挑战,我们提出了一种基于变换器的动态图表学习方法,命名为动态图形变换器(DGT),带有空间 - 时间编码,以有效地学习图形拓扑并捕获隐式链接。为了提高泛化能力,我们介绍了两个补充自我监督的预训练任务,并表明共同优化了两种预训练任务,通过信息理论分析导致较小的贝叶斯错误率。我们还提出了一个时间联盟图形结构和目标 - 上下文节点采样策略,用于高效和可扩展的培训。与现实世界数据集的广泛实验说明了与几个最先进的基线相比,DGT呈现出优异的性能。
translated by 谷歌翻译
给定实体及其在Web数据中的交互,可能在不同的时间发生,我们如何找到实体社区并跟踪其演变?在本文中,我们从图形群集的角度处理这项重要任务。最近,通过深层聚类方法,已经实现了各个领域的最新聚类性能。特别是,深图聚类(DGC)方法通过学习节点表示和群集分配在关节优化框架中成功扩展到图形结构的数据。尽管建模选择有所不同(例如,编码器架构),但现有的DGC方法主要基于自动编码器,并使用相同的群集目标和相对较小的适应性。同样,尽管许多现实世界图都是动态的,但以前的DGC方法仅被视为静态图。在这项工作中,我们开发了CGC,这是一个新颖的端到端图形聚类框架,其与现有方法的根本不同。 CGC在对比度图学习框架中学习节点嵌入和群集分配,在多级别方案中仔细选择了正面和负样本,以反映层次结构的社区结构和网络同质。此外,我们将CGC扩展到时间不断发展的数据,其中时间图以增量学习方式执行,并具有检测更改点的能力。对现实世界图的广泛评估表明,所提出的CGC始终优于现有方法。
translated by 谷歌翻译