图形表示学习(GRL)属性缺失的图表,这是一个常见的难以具有挑战性的问题,最近引起了相当大的关注。我们观察到现有文献:1)隔离属性和结构嵌入的学习因此未能采取两种类型的信息的充分优势; 2)对潜伏空间变量的分布假设施加过于严格的分布假设,从而导致差异较少的特征表示。在本文中,基于在两个信息源之间引入亲密信息交互的想法,我们提出了我们的暹罗属性丢失的图形自动编码器(SAGA)。具体而言,已经进行了三种策略。首先,我们通过引入暹罗网络结构来共享两个进程学习的参数来纠缠嵌入属性嵌入和结构嵌入,这允许网络培训从更丰富和不同的信息中受益。其次,我们介绍了一个K到最近的邻居(knn)和结构约束,增强了学习机制,通过过滤不可靠的连接来提高缺失属性的潜在特征的质量。第三,我们手动掩盖多个相邻矩阵上的连接,并强力嵌入子网恢复真正的相邻矩阵,从而强制实现所得到的网络能够选择性地利用更高级别的判别特征来进行数据完成。六个基准数据集上的广泛实验表明了我们传奇的优越性,反对最先进的方法。
translated by 谷歌翻译
深图形聚类,旨在揭示底层的图形结构并将节点划分为不同的群体,近年来引起了密集的关注。然而,我们观察到,在节点编码的过程中,现有方法遭受表示崩溃,这倾向于将所有数据映射到相同的表示中。因此,节点表示的鉴别能力是有限的,导致不满足的聚类性能。为了解决这个问题,我们提出了一种新颖的自我监督的深图聚类方法,通过以双向还原信息相关性来称呼双重关联减少网络(DCRN)。具体而言,在我们的方法中,我们首先将暹罗网络设计为编码样本。然后通过强制跨视图样本相关矩阵和跨视图特征相关矩阵分别近似两个标识矩阵,我们减少了双级的信息相关性,从而提高了所得特征的判别能力。此外,为了减轻通过在GCN中过度平滑引起的表示崩溃,我们引入了传播正规化术语,使网络能够利用浅网络结构获得远程信息。六个基准数据集的广泛实验结果证明了提出的DCRN对现有最先进方法的有效性。
translated by 谷歌翻译
近年来,多视图学习迅速发展。尽管许多先前的研究都认为每个实例都出现在所有视图中,但在现实世界应用程序中很常见,从某些视图中丢失实例,从而导致多视图数据不完整。为了解决这个问题,我们提出了一个新型潜在的异质图网络(LHGN),以实现不完整的多视图学习,该学习旨在以灵活的方式尽可能充分地使用多个不完整的视图。通过学习统一的潜在代表,隐含地实现了不同观点之间一致性和互补性之间的权衡。为了探索样本与潜在表示之间的复杂关系,首次提出了邻域约束和视图约束,以构建异质图。最后,为了避免训练和测试阶段之间的任何不一致之处,基于图形学习的分类任务应用了转导学习技术。对现实世界数据集的广泛实验结果证明了我们模型对现有最新方法的有效性。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)在半监督节点分类中实现了有希望的性能。但是,监督不足的问题以及代表性崩溃,在很大程度上限制了GNN在该领域的性能。为了减轻半监督场景中节点表示的崩溃,我们提出了一种新型的图形对比学习方法,称为混合图对比度网络(MGCN)。在我们的方法中,我们通过扩大决策边界的边距并提高潜在表示的跨视图一致性来提高潜在特征的歧视能力。具体而言,我们首先采用了基于插值的策略来在潜在空间中进行数据增强,然后迫使预测模型在样本之间进行线性更改。其次,我们使学习的网络能够通过强迫跨视图的相关矩阵近似身份矩阵来分开两个插值扰动视图的样品。通过结合两个设置,我们从丰富的未标记节点和罕见但有价值的标记节点中提取丰富的监督信息,以进行判别表示学习。六个数据集的广泛实验结果证明了与现有最​​新方法相比,MGCN的有效性和普遍性。
translated by 谷歌翻译
由于在建模相互依存系统中,由于其高效用,多层图已经在许多领域获得了大量的研究。然而,多层图的聚类,其旨在将图形节点划分为类别或社区,仍处于新生阶段。现有方法通常限于利用MultiView属性或多个网络,并忽略更复杂和更丰富的网络框架。为此,我们向多层图形聚类提出了一种名为Multidayer agal对比聚类网络(MGCCN)的多层图形聚类的通用和有效的AutoEncoder框架。 MGCCN由三个模块组成:(1)应用机制以更好地捕获节点与邻居之间的相关性以获得更好的节点嵌入。 (2)更好地探索不同网络中的一致信息,引入了对比融合策略。 (3)MGCCN采用自我监督的组件,可迭代地增强节点嵌入和聚类。对不同类型的真实图数据数据的广泛实验表明我们所提出的方法优于最先进的技术。
translated by 谷歌翻译
Effective data imputation demands rich latent ``structure" discovery capabilities from ``plain" tabular data. Recent advances in graph neural networks-based data imputation solutions show their strong structure learning potential by directly translating tabular data as bipartite graphs. However, due to a lack of relations between samples, those solutions treat all samples equally which is against one important observation: ``similar sample should give more information about missing values." This paper presents a novel Iterative graph Generation and Reconstruction framework for Missing data imputation(IGRM). Instead of treating all samples equally, we introduce the concept: ``friend networks" to represent different relations among samples. To generate an accurate friend network with missing data, an end-to-end friend network reconstruction solution is designed to allow for continuous friend network optimization during imputation learning. The representation of the optimized friend network, in turn, is used to further optimize the data imputation process with differentiated message passing. Experiment results on eight benchmark datasets show that IGRM yields 39.13% lower mean absolute error compared with nine baselines and 9.04% lower than the second-best.
translated by 谷歌翻译
归因图群集是图形分析字段中最重要的任务之一,其目的是将具有相似表示的节点分组到没有手动指导的情况下。基于图形对比度学习的最新研究在处理图形结构数据方面取得了令人印象深刻的结果。但是,现有的基于图形学习的方法1)不要直接解决聚类任务,因为表示和聚类过程是分开的; 2)过多地取决于图数据扩展,这极大地限制了对比度学习的能力; 3)忽略子空间聚类的对比度消息。为了适应上述问题,我们提出了一个通用框架,称为双重对比归因于图形聚类网络(DCAGC)。在DCAGC中,通过利用邻里对比模块,将最大化邻居节点的相似性,并提高节点表示的质量。同时,对比度自我表达模块是通过在自我表达层重建之前和之后最小化节点表示形式来构建的,以获得用于光谱群集的区分性自我表达矩阵。 DCAGC的所有模块均在统一框架中训练和优化,因此学习的节点表示包含面向群集的消息。与16种最先进的聚类方法相比,四个属性图数据集的大量实验结果显示了DCAGC的优势。本文的代码可在https://github.com/wangtong627/dual-contrastive-attributed-graph-cluster-clustering-network上获得。
translated by 谷歌翻译
Graph contrastive learning is an important method for deep graph clustering. The existing methods first generate the graph views with stochastic augmentations and then train the network with a cross-view consistency principle. Although good performance has been achieved, we observe that the existing augmentation methods are usually random and rely on pre-defined augmentations, which is insufficient and lacks negotiation between the final clustering task. To solve the problem, we propose a novel Graph Contrastive Clustering method with the Learnable graph Data Augmentation (GCC-LDA), which is optimized completely by the neural networks. An adversarial learning mechanism is designed to keep cross-view consistency in the latent space while ensuring the diversity of augmented views. In our framework, a structure augmentor and an attribute augmentor are constructed for augmentation learning in both structure level and attribute level. To improve the reliability of the learned affinity matrix, clustering is introduced to the learning procedure and the learned affinity matrix is refined with both the high-confidence pseudo-label matrix and the cross-view sample similarity matrix. During the training procedure, to provide persistent optimization for the learned view, we design a two-stage training strategy to obtain more reliable clustering information. Extensive experimental results demonstrate the effectiveness of GCC-LDA on six benchmark datasets.
translated by 谷歌翻译
异质图卷积网络在解决异质网络数据的各种网络分析任务方面已广受欢迎,从链接预测到节点分类。但是,大多数现有作品都忽略了多型节点之间的多重网络的关系异质性,而在元路径中,元素嵌入中关系的重要性不同,这几乎无法捕获不同关系跨不同关系的异质结构信号。为了应对这一挑战,这项工作提出了用于异质网络嵌入的多重异质图卷积网络(MHGCN)。我们的MHGCN可以通过多层卷积聚合自动学习多重异质网络中不同长度的有用的异质元路径相互作用。此外,我们有效地将多相关结构信号和属性语义集成到学习的节点嵌入中,并具有无监督和精选的学习范式。在具有各种网络分析任务的五个现实世界数据集上进行的广泛实验表明,根据所有评估指标,MHGCN与最先进的嵌入基线的优势。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been a prevailing technique for tackling various analysis tasks on graph data. A key premise for the remarkable performance of GNNs relies on complete and trustworthy initial graph descriptions (i.e., node features and graph structure), which is often not satisfied since real-world graphs are often incomplete due to various unavoidable factors. In particular, GNNs face greater challenges when both node features and graph structure are incomplete at the same time. The existing methods either focus on feature completion or structure completion. They usually rely on the matching relationship between features and structure, or employ joint learning of node representation and feature (or structure) completion in the hope of achieving mutual benefit. However, recent studies confirm that the mutual interference between features and structure leads to the degradation of GNN performance. When both features and structure are incomplete, the mismatch between features and structure caused by the missing randomness exacerbates the interference between the two, which may trigger incorrect completions that negatively affect node representation. To this end, in this paper we propose a general GNN framework based on teacher-student distillation to improve the performance of GNNs on incomplete graphs, namely T2-GNN. To avoid the interference between features and structure, we separately design feature-level and structure-level teacher models to provide targeted guidance for student model (base GNNs, such as GCN) through distillation. Then we design two personalized methods to obtain well-trained feature and structure teachers. To ensure that the knowledge of the teacher model is comprehensively and effectively distilled to the student model, we further propose a dual distillation mode to enable the student to acquire as much expert knowledge as possible.
translated by 谷歌翻译
尽管图表学习(GRL)取得了重大进展,但要以足够的方式提取和嵌入丰富的拓扑结构和特征信息仍然是一个挑战。大多数现有方法都集中在本地结构上,并且无法完全融合全球拓扑结构。为此,我们提出了一种新颖的结构保留图表学习(SPGRL)方法,以完全捕获图的结构信息。具体而言,为了减少原始图的不确定性和错误信息,我们通过k-nearest邻居方法构建了特征图作为互补视图。该特征图可用于对比节点级别以捕获本地关系。此外,我们通过最大化整个图形和特征嵌入的相互信息(MI)来保留全局拓扑结构信息,从理论上讲,该信息可以简化为交换功能的特征嵌入和原始图以重建本身。广泛的实验表明,我们的方法在半监督节点分类任务上具有相当出色的性能,并且在图形结构或节点特征上噪声扰动下的鲁棒性出色。
translated by 谷歌翻译
对比度学习最近引起了深度群集的充满希望的表现。但是,复杂的数据增强和耗时的图卷积操作破坏了这些方法的效率。为了解决此问题,我们提出了一种简单的对比度图聚类(SCGC)算法,以从网络体系结构,数据增强和目标函数的角度改进现有方法。至于架构,我们的网络包括两个主要部分,即预处理和网络骨干。一个简单的低通denoising操作将邻居信息聚合作为独立的预处理,仅包括两个多层感知器(MLP)作为骨干。对于数据增强,我们没有通过图形引入复杂操作,而是通过设计参数UNSHARED SIAMESE编码并直接损坏节点嵌入的参数来构造同一顶点的两个增强视图。最后,关于目标函数,为了进一步提高聚类性能,新型的跨视图结构一致性目标函数旨在增强学习网络的判别能力。七个基准数据集的广泛实验结果验证了我们提出的算法的有效性和优势。值得注意的是,我们的算法的表现超过了最近的对比群集竞争对手,平均速度至少七倍。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have attracted increasing attention in recent years and have achieved excellent performance in semi-supervised node classification tasks. The success of most GNNs relies on one fundamental assumption, i.e., the original graph structure data is available. However, recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph, making it necessary to learn comprehensive and robust graph structures for downstream tasks, rather than relying only on the raw graph structure. In light of this, we seek to learn optimal graph structures for downstream tasks and propose a novel framework for semi-supervised classification. Specifically, based on the structural context information of graph and node representations, we encode the complex interactions in semantics and generate semantic graphs to preserve the global structure. Moreover, we develop a novel multi-measure attention layer to optimize the similarity rather than prescribing it a priori, so that the similarity can be adaptively evaluated by integrating measures. These graphs are fused and optimized together with GNN towards semi-supervised classification objective. Extensive experiments and ablation studies on six real-world datasets clearly demonstrate the effectiveness of our proposed model and the contribution of each component.
translated by 谷歌翻译
在本文中,我们考虑了在不完整视图上的多视图聚类问题。与完整的多视图聚类相比,视图缺失的问题会增加学习不同视图的常见表示的难度。为了解决挑战,我们提出了一种新颖的不完整的多视图聚类框架,该框架包含跨视网围传输和多视图融合学习。具体地,基于在多视图数据中存在的一致性,我们设计了一种基于跨视网围的转移转移的完成模块,该完成模块将已知与缺失视图的已知相似的相互关系的关系传输,并根据传输的图形网络恢复丢失的数据关系图。然后,设计特定于特定的编码器以提取恢复的多视图数据,引入基于注意的融合层以获得公共表示。此外,为了减少由视图之间不一致并获得更好的聚类结构引起的误差的影响,引入了联合聚类层以同时优化恢复和聚类。在几个真实数据集上进行的广泛实验证明了该方法的有效性。
translated by 谷歌翻译
基于图形的多视图聚类,旨在跨多种视图获取数据分区,近年来接受了相当大的关注。虽然已经为基于图形的多视图群集进行了巨大努力,但它对各种视图融合特征仍然是一个挑战,以学习聚类的常见表示。在本文中,我们提出了一种新的一致多曲线图嵌入聚类框架(CMGEC)。具体地,设计了一种多图自动编码器(M-GAE),用于使用多图注意融合编码器灵活地编码多视图数据的互补信息。为了引导所学过的公共表示维护每个视图中相邻特征的相似性,引入了多视图相互信息最大化模块(MMIM)。此外,设计了一个图形融合网络(GFN),以探讨来自不同视图的图表之间的关系,并提供M-GAE所需的常见共识图。通过联合训练这些模型,可以获得共同的潜在表示,其从多个视图中编码更多互补信息,并更全面地描绘数据。三种类型的多视图数据集的实验表明CMGEC优于最先进的聚类方法。
translated by 谷歌翻译
Graph neural networks (GNNs) are popular weapons for modeling relational data. Existing GNNs are not specified for attribute-incomplete graphs, making missing attribute imputation a burning issue. Until recently, many works notice that GNNs are coupled with spectral concentration, which means the spectrum obtained by GNNs concentrates on a local part in spectral domain, e.g., low-frequency due to oversmoothing issue. As a consequence, GNNs may be seriously flawed for reconstructing graph attributes as graph spectral concentration tends to cause a low imputation precision. In this work, we present a regularized graph autoencoder for graph attribute imputation, named MEGAE, which aims at mitigating spectral concentration problem by maximizing the graph spectral entropy. Notably, we first present the method for estimating graph spectral entropy without the eigen-decomposition of Laplacian matrix and provide the theoretical upper error bound. A maximum entropy regularization then acts in the latent space, which directly increases the graph spectral entropy. Extensive experiments show that MEGAE outperforms all the other state-of-the-art imputation methods on a variety of benchmark datasets.
translated by 谷歌翻译
Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via contrastive mechanisms, is a challenging research spot. Among the recent works, hard sample mining-based algorithms have achieved great attention for their promising performance. However, we find that the existing hard sample mining methods have two problems as follows. 1) In the hardness measurement, the important structural information is overlooked for similarity calculation, degrading the representativeness of the selected hard negative samples. 2) Previous works merely focus on the hard negative sample pairs while neglecting the hard positive sample pairs. Nevertheless, samples within the same cluster but with low similarity should also be carefully learned. To solve the problems, we propose a novel contrastive deep graph clustering method dubbed Hard Sample Aware Network (HSAN) by introducing a comprehensive similarity measure criterion and a general dynamic sample weighing strategy. Concretely, in our algorithm, the similarities between samples are calculated by considering both the attribute embeddings and the structure embeddings, better revealing sample relationships and assisting hardness measurement. Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones. In this way, our method can mine not only the hard negative samples but also the hard positive sample, thus improving the discriminative capability of the samples further. Extensive experiments and analyses demonstrate the superiority and effectiveness of our proposed method.
translated by 谷歌翻译
图表是一个宇宙数据结构,广泛用于组织现实世界中的数据。像交通网络,社交和学术网络这样的各种实际网络网络可以由图表代表。近年来,目睹了在网络中代表顶点的快速发展,进入低维矢量空间,称为网络表示学习。表示学习可以促进图形数据上的新算法的设计。在本调查中,我们对网络代表学习的当前文献进行了全面审查。现有算法可以分为三组:浅埋模型,异构网络嵌入模型,图形神经网络的模型。我们为每个类别审查最先进的算法,并讨论这些算法之间的基本差异。调查的一个优点是,我们系统地研究了不同类别的算法底层的理论基础,这提供了深入的见解,以更好地了解网络表示学习领域的发展。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
属性网络上的节点分类是一项半监督任务,对于网络分析至关重要。通过将图形卷积网络(GCN)中的两个关键操作解耦,即具有转换和邻域聚合,截断的GCN的一些最新作品可以支持这些信息,以更深入地传播并实现高级性能。但是,它们遵循GCN的传统结构感知的传播策略,因此很难捕获节点的属性相关性,并对由两个端点属于不同类别的边缘描述的结构噪声敏感。为了解决这些问题,我们提出了一种新方法,称为“裂开式”传播,然后训练(PAMT)。关键思想是将属性相似性掩码整合到结构感知的传播过程中。这样,PAMT可以在传播过程中保留相邻节点的属性相关性,并有效地减少结构噪声的影响。此外,我们开发了一种迭代改进机制,以在改善培训性能的培训过程中更新相似性面罩。在四个现实世界数据集上进行的广泛实验证明了PAMT的出色性能和鲁棒性。
translated by 谷歌翻译