低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
由于捕获高角度和时间分辨率测量的能力,毫米波(MMWAVE)带引起了高精度定位应用的显着关注。本文探讨了基于MMWAVE的定位,用于目标本地化问题,其中固定目标广播MMWAVE信号和移动机器人代理尝试侦听信号以定位和导航到目标。提出了三个韵律过程:首先,移动代理使用张量分解方法来检测无线路径及其角度。其次,然后使用机器学习培训的分类器来预测链路状态,这意味着如果最强的路径是视线(LOS)或非LOS(NLO)。对于NLOS案例,链路状态预测器还确定最强路径是否通过一个或多个反射到达。第三,基于链路状态,代理人遵循估计的角度或探索环境。该方法在补充有线跟踪的室内环境的大型数据集上进行了演示,以模拟无线传播。路径估计和链路状态分类也集成到最先进的神经同时定位和映射(SLAM)模块中,以增强相机和基于LIDAR的导航。结果表明,链路状态分类器可以成功地推广到培训集外的完全新环境。另外,具有无线路径估计和链路状态分类器的神经基模块为目标提供快速导航,接近了解目标位置的基线。
translated by 谷歌翻译
在室内和GPS拒绝环境中的无线移动设备或机器人的本地化是一个难题,特别是在传统摄像机和基于LIDAR的替代感测和本地化模式可能失败的动态场景中。我们提出了一种用于估计移动机器人的位置与在环境中部署的静态无线传感器节点(WSN)相关的方法。该方法采用新的粒子滤波器,其使用在到达方向(DOA)估计的高斯概率与移动机器人的移动模型结合使用的高斯概率来更新其权重。通过广泛的模拟和公共现实世界测量数据集,在准确性和计算效率方面评估和验证所提出的方法,与标准的最先进的本地化方法相比。结果显示了通过高计算效率平衡的高仪表级定位精度,使其能够在线使用,而无需为基于典型指纹的定位算法中的专用离线阶段使用。
translated by 谷歌翻译
We present a new technique called "t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the data sets.
translated by 谷歌翻译
从物理层和粗粒度接收信号强度指示符(RSSI)测量的细粒度通道状态信息(CSI)互补,中间粒度的空间光束属性(例如,光束SNR)可在毫米波( MMWAVE)在强制波束训练阶段的频带可以重新估算Wi-Fi传感应用。在本文中,我们提出了一种用于Wi-Fi的多频带Wi-Fi融合方法,该方法是在粒度的60GHz处,从Sub-6 GHz和中粒梁SNR中的细粒度CSI的特征进行分层熔化的特征匹配框架。通过以不同的粒度水平与CSI和光束SNR配对的两个特征映射来实现粒度匹配,并将所有配对特征映射到具有可读权重的融合特征映射中。为了进一步解决有限标记的培训数据问题,我们提出了一种基于AutoEncoder的多频带Wi-Fi融合网络,可以以无监督的方式预先培训。一旦预先培训了基于AutoEncoder的融合网络,我们将通过微调融合块来分离解码器并将多任务传感头附加到融合特征映射并从头开始重新培训多任务头。通过内部实验Wi-Fi传感数据集进行多频带Wi-Fi融合框架,跨越三个任务:1)姿势识别; 2)占用感应;和3)室内本地化。与四种基线方法(即,仅CSI,仅限CSIS SNR,输入融合和特征融合)进行比较演示了粒度匹配,提高了多任务传感性能。定量性能被评估为标记培训数据,潜在空间维度和微调学习率的数量的函数。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
被动射频(RF)感测和对老年护理房屋的人类日常活动监测是一个新兴的话题。微多普勒雷达是一种吸引人的解决方案,考虑到它们的非侵入性,深渗透和高距离范围。尽管在真实情景中未标记或较差的活动的情况下,但是使用多普勒雷达数据的无监督活动识别尚未得到注意。本研究提出了使用多普勒流的人类活动监测的两个无监督特征提取方法。这些包括基于局部离散余弦变换(DCT)的特征提取方法和基于局部熵的特征提取方法。此外,对于多普勒雷达数据,首次采用了卷积变分性自动化器(CVAE)特征提取的新应用。将三种特征提取架构与先前使用的卷积AutoEncoder(CAE)和基于主成分分析(PCA)和2DPCA的线性特征提取进行比较。使用K-Means和K-METOIDS进行无监督的聚类。结果表明,与CAE,PCA和2DPCA相比,基于DCT的方法,基于熵的方法和CVAE特征的优越性,具有超过5 \%-20 \%的平均精度。关于计算时间,两个提出的方法明显比现有的CVAE快得多。此外,对于高维数据可视化,考虑了三种歧管学习技术。比较方法,以对原始数据的投影以及编码的CVAE特征进行比较。当应用于编码的CVAE特征时,所有三种方法都显示出改善的可视化能力。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
无人机尚未完全信任。他们对导航的无线电和摄像机的依赖提高了安全性和隐私问题。这些系统可能会失败,导致事故,或滥用未经授权的录音。考虑到最近的法规,允许商业无人机仅在晚上运营,我们提出了一种从完全新的方法,无人机从人工照明中获得导航信息。在我们的系统中,标准灯泡调制其强度发送信标,无人机用简单的光电二极管解码此信息。该光学信息与无人机中的惯性和高度传感器组合,以提供定位,而无需无线电,GPS或相机。我们的框架是第一个提供3D无人机定位的灯光,我们用一个由四个光标记和迷你无人机组成的试验台来评估它。我们表明,我们的方法允许将无人机定位在实际位置的几个小叠内,并与最先进的定位方法相比,将本地化误差降低42%。
translated by 谷歌翻译
在车辆场景中的毫米波链路的光束选择是一个具有挑战性的问题,因为所有候选光束对之间的详尽搜索都不能在短接触时间内被确认完成。我们通过利用像LIDAR,相机图像和GPS等传感器收集的多模级数据来解决这一问题。我们提出了可以在本地以及移动边缘计算中心(MEC)本地执行的个人方式和分布式融合的深度学习(F-DL)架构,并研究相关权衡。我们还制定和解决优化问题,以考虑实际的光束搜索,MEC处理和传感器到MEC数据传送延迟开销,用于确定上述F-DL架构的输出尺寸。在公开的合成和本土现实世界数据集上进行的广泛评估结果分别在古典RF光束上释放出95%和96%的束选择速度提高。在预测前10个最佳光束对中,F-DL还优于最先进的技术20-22%。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
本文提出了一种对无线通信中的一类主动感测问题的深度学习方法,其中代理在预定数量的时间帧上与环境顺序地交互以收集信息,以便为最大化一些实用程序函数来执行感测或致动任务。在这样的主动学习设置中,代理需要根据到目前为止所做的观察结果来依次设计自适应感测策略。为了解决如此挑战的问题,其中历史观察的维度随着时间的推移而增加,我们建议使用长期短期记忆(LSTM)网络来利用观察序列中的时间相关性,并将每个观察映射到固定的尺寸状态信息矢量。然后,我们使用深神经网络(DNN)将LSTM状态映射到每个时间帧到下一个测量步骤的设计。最后,我们采用另一个DNN将最终的LSTM状态映射到所需的解决方案。我们调查了无线通信中建议框架的性能框架的性能。特别地,我们考虑用于MMWAVE光束对准的自适应波束形成问题和反射对准的自适应可重构智能表面感测问题。数值结果表明,所提出的深度主动传感策略优于现有的自适应或非一种非应用感测方案。
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
在本文中,我们介绍了一种生成的对抗性网络(GaN)机器学习模型,用于在空间域中插入不规则分布的测量,以构造平滑的射频图(RFMAP),然后使用深神经网络进行定位。在空间,时间和频域中监控无线频谱将成为促进超出-5G和6G通信技术的动态频谱访问(DSA)的关键特性。本地化,无线信号检测和频谱策略制作是分布式频谱感测的几个应用程序将发挥重要作用。无线发射器的检测和定位是在大谱和空间区域中非常具有挑战性的任务。为了构建平滑的RFMAP数据库,需要大量测量,这可能非常昂贵且耗时。一种帮助实现这些系统的一种方法是在给定区域中收集有限的局部测量,然后将测量值插入以构造数据库。文献中的当前方法采用信道建模来构建射频图,其缺乏用于精确定位的粒度,而我们所提出的方法重建了新的广义RFMAP。将本地化结果与传统信道模型进行了呈现和比较。
translated by 谷歌翻译
昂贵的传感器和低效的算法管道显着影响自动机器的总成本。然而,实惠的机器人解决方案对于实际使用至关重要,其财务影响构成了在大多数申请领域采用服务机器人的基本要求。其中,精密农业领域的研究人员努力设计强大,经济高效的自主平台,以提供真正的大规模竞争解决方案。在本文中,我们提出了一个完整的算法管道,用于基于行的作物自主导航,专门设计用于应对低范围的传感器和季节性变化。首先,我们建立一个强大的数据驱动方法,为自主机器生成一个可行的路径,仅涵盖庄稼的占用网格信息的裁剪的完整扩展。此外,我们的解决方案利用了深入学习优化技术和综合生成数据的最新进步,以提供一种实惠的解决方案,可有效地解决由于植被生长在行的植被而有效地解决了众所周知的全球导航卫星系统不可靠性和降级。对计算机生成的环境和现实世界作物的广泛实验和模拟表明了我们的方法的稳健性和内在的完全平整性,其开辟了高度实惠和完全自主机器的可能性。
translated by 谷歌翻译
第五代(5G)网络和超越设想巨大的东西互联网(物联网)推出,以支持延长现实(XR),增强/虚拟现实(AR / VR),工业自动化,自主驾驶和智能所有带来的破坏性应用一起占用射频(RF)频谱的大规模和多样化的IOT设备。随着频谱嘎嘎和吞吐量挑战,这种大规模的无线设备暴露了前所未有的威胁表面。 RF指纹识别是预约的作为候选技术,可以与加密和零信任安全措施相结合,以确保无线网络中的数据隐私,机密性和完整性。在未来的通信网络中,在这项工作中,在未来的通信网络中的相关性,我们对RF指纹识别方法进行了全面的调查,从传统观点到最近的基于深度学习(DL)的算法。现有的调查大多专注于无线指纹方法的受限制呈现,然而,许多方面仍然是不可能的。然而,在这项工作中,我们通过解决信号智能(SIGINT),应用程序,相关DL算法,RF指纹技术的系统文献综述来缓解这一点,跨越过去二十年的RF指纹技术的系统文献综述,对数据集和潜在研究途径的讨论 - 必须以百科全书的方式阐明读者的必要条件。
translated by 谷歌翻译
可重新配置的智能表面(RIS)是未来无线通信系统的新兴技术。在这项工作中,我们考虑由RIS启用的下行链路空间多路复用,以获得加权和速率(WSR)最大化。在文献中,大多数解决方案使用交替的基于梯度的优化,具有中等性能,高复杂性和有限的可扩展性。我们建议应用完全卷积的网络(FCN)来解决这个问题,最初是为图像的语义分割而设计的。 RIS的矩形形状和具有相邻RIS天线的通道的空间相关性由于它们之间的短距离而鼓励我们将其应用于RIS配置。我们设计一组通道功能,包括通过RIS和Direct通道的级联通道。在基站(BS)中,可分离的最小均方平方误差(MMSE)预编码器用于预测,然后应用加权最小均方误差(WMMSE)预编码器以进行微调,这是不增强的,更复杂的,但实现更好的表现。评价结果表明,该解决方案具有更高的性能,允许比基线更快的评估。因此,它可以更好地缩放到大量的天线,推进RIS更接近实际部署的步骤。
translated by 谷歌翻译
由于其低复杂性和鲁棒性,机器学习(ML)吸引了对物理层设计问题的巨大研究兴趣,例如信道估计。通道估计通过ML需要在数据集上进行模型训练,该数据集通常包括作为输入和信道数据的接收的导频信号作为输出。在以前的作品中,模型培训主要通过集中式学习(CL)进行,其中整个训练数据集从基站(BS)的用户收集。这种方法引入了数据收集的巨大通信开销。在本文中,为了解决这一挑战,我们提出了一种用于频道估计的联邦学习(FL)框架。我们设计在用户的本地数据集上培训的卷积神经网络(CNN),而不将它们发送到BS。我们为常规和RIS(智能反射表面)开发了基于流的信道估计方案,辅助大规模MIMO(多输入多输出)系统,其中单个CNN为两种情况训练了两个不同的数据集。我们评估噪声和量化模型传输的性能,并表明所提出的方法提供大约16倍的开销比CL,同时保持令人满意的性能接近CL。此外,所提出的架构表现出比最先进的ML的估计误差较低。
translated by 谷歌翻译
我们在本文中介绍Raillomer,实现实时准确和鲁棒的内径测量和轨道车辆的测绘。 Raillomer从两个Lidars,IMU,火车车程和全球导航卫星系统(GNSS)接收器接收测量。作为前端,来自IMU / Royomer缩放组的估计动作De-Skews DeSoised Point云并为框架到框架激光轨道测量产生初始猜测。作为后端,配制了基于滑动窗口的因子图以共同优化多模态信息。另外,我们利用来自提取的轨道轨道和结构外观描述符的平面约束,以进一步改善对重复结构的系统鲁棒性。为了确保全局常见和更少的模糊映射结果,我们开发了一种两级映射方法,首先以本地刻度执行扫描到地图,然后利用GNSS信息来注册模块。该方法在聚集的数据集上广泛评估了多次范围内的数据集,并且表明Raillomer即使在大或退化的环境中也能提供排入量级定位精度。我们还将Raillomer集成到互动列车状态和铁路监控系统原型设计中,已经部署到实验货量交通铁路。
translated by 谷歌翻译