研究了与隐藏变量有关的非循环图(DAG)相关的因果模型中因果效应的识别理论。然而,由于估计它们输出的识别功能的复杂性,因此未耗尽相应的算法。在这项工作中,我们弥合了识别和估算涉及单一治疗和单一结果的人口水平因果效应之间的差距。我们派生了基于功能的估计,在大类隐藏变量DAG中表现出对所识别的效果的双重稳健性,其中治疗满足简单的图形标准;该类包括模型,产生调整和前门功能作为特殊情况。我们还提供必要的和充分条件,其中隐藏变量DAG的统计模型是非分子饱和的,并且意味着对观察到的数据分布没有平等约束。此外,我们推导了一类重要的隐藏变量DAG,这意味着观察到观察到的数据分布等同于完全观察到的DAG等同于(最高的相等约束)。在这些DAG类中,我们推出了实现兴趣目标的半导体效率界限的估计估计值,该估计是治疗满足我们的图形标准的感兴趣的目标。最后,我们提供了一种完整的识别算法,可直接产生基于权重的估计策略,以了解隐藏可变因果模型中的任何可识别效果。
translated by 谷歌翻译
尽管在治疗和结果之间存在未衡量的混杂因素,但前门标准可用于识别和计算因果关系。但是,关键假设 - (i)存在充分介导治疗对结果影响的变量(或一组变量)的存在,(ii)同时并不遭受类似的混淆问题的困扰 - outcome对 - 通常被认为是难以置信的。本文探讨了这些假设的可检验性。我们表明,在涉及辅助变量的轻度条件下,可以通过广义平等约束也可以测试前门模型中编码的假设(以及简单的扩展)。我们基于此观察结果提出了两个合适性测试,并评估我们对真实和合成数据的提议的疗效。我们还将理论和经验比较与仪器可变方法处理未衡量的混杂。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
常用图是表示和可视化因果关系的。对于少量变量,这种方法提供了简洁和清晰的方案的视图。随着下属的变量数量增加,图形方法可能变得不切实际,并且表示的清晰度丢失。变量的聚类是减少因果图大小的自然方式,但如果任意实施,可能会错误地改变因果关系的基本属性。我们定义了一种特定类型的群集,称为Transit Cluster,保证在某些条件下保留因果效应的可识别性属性。我们提供了一种用于在给定图中查找所有传输群集的声音和完整的算法,并演示集群如何简化因果效应的识别。我们还研究了逆问题,其中一个人以群集的图形开始,寻找扩展图,其中因果效应的可识别性属性保持不变。我们表明这种结构稳健性与过境集群密切相关。
translated by 谷歌翻译
我们考虑代表代理模型的问题,该模型使用我们称之为CSTREES的阶段树模型的适当子类对离散数据编码离散数据的原因模型。我们表明,可以通过集合表达CSTREE编码的上下文专用信息。由于并非所有阶段树模型都承认此属性,CSTREES是一个子类,可提供特定于上下文的因果信息的透明,直观和紧凑的表示。我们证明了CSTREEES承认全球性马尔可夫属性,它产生了模型等价的图形标准,概括了Verma和珍珠的DAG模型。这些结果延伸到一般介入模型设置,使CSTREES第一族的上下文专用模型允许介入模型等价的特征。我们还为CSTREE的最大似然估计器提供了一种封闭式公式,并使用它来表示贝叶斯信息标准是该模型类的本地一致的分数函数。在模拟和实际数据上分析了CSTHEELE的性能,在那里我们看到与CSTREELE而不是一般上演树的建模不会导致预测精度的显着损失,同时提供了特定于上下文的因果信息的DAG表示。
translated by 谷歌翻译
In many investigations, the primary outcome of interest is difficult or expensive to collect. Examples include long-term health effects of medical interventions, measurements requiring expensive testing or follow-up, and outcomes only measurable on small panels as in marketing. This reduces effective sample sizes for estimating the average treatment effect (ATE). However, there is often an abundance of observations on surrogate outcomes not of primary interest, such as short-term health effects or online-ad click-through. We study the role of such surrogate observations in the efficient estimation of treatment effects. To quantify their value, we derive the semiparametric efficiency bounds on ATE estimation with and without the presence of surrogates and several intermediary settings. The difference between these characterizes the efficiency gains from optimally leveraging surrogates. We study two regimes: when the number of surrogate observations is comparable to primary-outcome observations and when the former dominates the latter. We take an agnostic missing-data approach circumventing strong surrogate conditions previously assumed. To leverage surrogates' efficiency gains, we develop efficient ATE estimation and inference based on flexible machine-learning estimates of nuisance functions appearing in the influence functions we derive. We empirically demonstrate the gains by studying the long-term earnings effect of job training.
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
我们研究了在个性化治疗规则下估算介入均值的调整集的选择。我们假设具有,可能是隐藏变量和由可观察变量组成的至少一个调整集的非参数因果图形模型。此外,我们假设可观察变量具有与它们相关的正成本。我们将可观察调整集的成本定义为包含它的变量成本的总和。我们认为,在此设置中,存在最小成本最佳的调整集,从而使其产生的非参数估计值与控制可观察到的可观察调整集中的最小渐近方差。我们的结果基于与原始因果图相关的特殊流量网络的构建。我们表明,可以通过计算网络上的最大流程,然后通过增强路径找到从源可到达的一组顶点来找到最低成本最佳调整集。 OptimalAdj Python包实现本文介绍的算法。
translated by 谷歌翻译
我们研究了对识别的非唯一麻烦的线性功能的通用推断,该功能定义为未识别条件矩限制的解决方案。这个问题出现在各种应用中,包括非参数仪器变量模型,未衡量的混杂性下的近端因果推断以及带有阴影变量的丢失 - 与随机数据。尽管感兴趣的线性功能(例如平均治疗效应)在适当的条件下是可以识别出的,但令人讨厌的非独家性对统计推断构成了严重的挑战,因为在这种情况下,常见的滋扰估计器可能是不稳定的,并且缺乏固定限制。在本文中,我们提出了对滋扰功能的受惩罚的最小估计器,并表明它们在这种挑战性的环境中有效推断。提出的滋扰估计器可以适应灵活的功能类别,重要的是,无论滋扰是否是唯一的,它们都可以融合到由惩罚确定的固定限制。我们使用受惩罚的滋扰估计器来形成有关感兴趣的线性功能的依据估计量,并在通用高级条件下证明其渐近正态性,这提供了渐近有效的置信区间。
translated by 谷歌翻译
在观察性研究中,经常遇到有关存在或缺乏因果边缘和路径的因果背景知识。由于背景知识而导致的马尔可夫等效dag的子类共享的指向边缘和链接可以由因果关系最大部分定向的无循环图(MPDAG)表示。在本文中,我们首先提供了因果MPDAG的声音和完整的图形表征,并提供了因果MPDAG的最小表示。然后,我们介绍了一种名为Direct Causal子句(DCC)的新颖表示,以统一形式表示所有类型的因果背景知识。使用DCC,我们研究因果背景知识的一致性和等效性,并表明任何因果背景知识集都可以等效地分解为因果MPDAG,以及最小的残留DCC。还提供了多项式时间算法,以检查一致性,等效性并找到分解的MPDAG和残留DCC。最后,有了因果背景知识,我们证明了一个足够且必要的条件来识别因果关系,并且出人意料地发现因果效应的可识别性仅取决于分解的MPDAG。我们还开发了局部IDA型算法,以估计无法识别效应的可能值。模拟表明因果背景知识可以显着提高因果影响的识别性。
translated by 谷歌翻译
现代纵向研究在许多时间点收集特征数据,通常是相同的样本大小顺序。这些研究通常受到{辍学}和积极违规的影响。我们通过概括近期增量干预的效果(转换倾向分数而不是设置治疗价值)来解决这些问题,以适应多种结果和主题辍学。当条件忽略(不需要治疗阳性)时,我们给出了识别表达式的增量干预效果,并导出估计这些效果的非参数效率。然后我们提出了高效的非参数估计器,表明它们以快速参数速率收敛并产生均匀的推理保证,即使在较慢的速率下灵活估计滋扰函数。我们还研究了新型无限时间范围设置中的更传统的确定性效果的增量干预效应的方差比,其中时间点的数量可以随着样本大小而生长,并显示增量干预效果在统计精度下产生近乎指数的收益这个设置。最后,我们通过模拟得出结论,并在研究低剂量阿司匹林对妊娠结果的研究中进行了方法。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
我们推出了一般,但简单,尖锐的界限,用于广泛的因果参数的省略可变偏置,可以被识别为结果的条件期望函数的线性功能。这些功能包括许多传统的因果推断研究中的调查目标,例如(加权)平均潜在结果,平均治疗效果(包括亚组效应,例如对处理的效果),(加权)平均值来自协变态分布的转变的衍生品和政策影响 - 所有是一般的非参数因果模型。我们的建设依赖于目标功能的riesz-frechet表示。具体而言,我们展示了偏差的绑定如何仅取决于潜在变量在结果中创建的附加变型以及用于感兴趣的参数的RIESZ代表。此外,在许多重要病例中(例如,部分线性模型中的平均治疗效果,或在具有二元处理的不可分配模型中),所示的界定依赖于两个易于解释的数量:非参数部分$ r ^ 2 $(Pearson的相关性与治疗和结果的未观察变量的比例“。因此,对省略变量的最大解释力(在解释处理和结果变化时)的简单合理性判断足以将整体界限放置在偏置的尺寸上。最后,利用脱叠机器学习,我们提供灵活有效的统计推理方法,以估计从观察到的分布识别的界限的组件。
translated by 谷歌翻译
预测一组结果 - 而不是独特的结果 - 是统计学习中不确定性定量的有前途的解决方案。尽管有关于构建具有统计保证的预测集的丰富文献,但适应未知的协变量转变(实践中普遍存在的问题)还是一个严重的未解决的挑战。在本文中,我们表明具有有限样本覆盖范围保证的预测集是非信息性的,并提出了一种新型的无灵活分配方法PredSet-1Step,以有效地构建了在未知协方差转移下具有渐近覆盖范围保证的预测集。我们正式表明我们的方法是\ textIt {渐近上可能是近似正确},对大型样本的置信度有很好的覆盖误差。我们说明,在南非队列研究中,它在许多实验和有关HIV风险预测的数据集中实现了名义覆盖范围。我们的理论取决于基于一般渐近线性估计器的WALD置信区间覆盖范围的融合率的新结合。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
解决了选择最佳后门调整集的问题,以解决隐藏和条件变量的图形模型中的因果效应。以前的工作已经定义了实现最小的渐近估计方差,并且在没有隐藏变量的情况下派生的最佳集。对于隐藏变量的情况,可以有设置在没有最佳集合的情况下,并且目前仅导出有限适用性的足够的图形最优标准。在本工作中,最优性的特征在于最大化某个调整信息,该信息允许导出用于存在最佳调整集的必要和足够的图形标准和构造它的定义和算法。此外,如果仅存在有效调整集并且具有比Perkovi {\'C}等所提出的调整集更高(或等于)调整信息,则最佳集是有效的。 [机器学习研究学报,18:1--62,2018]任何图表。结果转化为一类估计的渐近估计差异,其渐近方差遵循某种信息理论关系。数值实验表明,渐近结果也适用于相对较小的样本尺寸,并且最佳调整集或其最小化变体通常也会产生更好的方差,也超出该估计类。令人惊讶的是,在随机创建的设置中,超过90 \%满足最优性条件,指示在许多现实世界场景中也可以保持。代码可用作Python Package \ URL {https://github.com/jakobrunge/tigramite}的一部分。
translated by 谷歌翻译
In this paper we prove the so-called "Meek Conjecture". In particular, we show that if a DAG H is an independence map of another DAG G, then there exists a finite sequence of edge additions and covered edge reversals in G such that (1) after each edge modification H remains an independence map of G and ( 2) after all modifications G = H. As shown by Meek (1997), this result has an important consequence for Bayesian approaches to learning Bayesian networks from data: in the limit of large sample size, there exists a twophase greedy search algorithm that-when applied to a particular sparsely-connected search space-provably identifies a perfect map of the generative distribution if that perfect map is a DAG. We provide a new implementation of the search space, using equivalence classes as states, for which all operators used in the greedy search can be scored efficiently using local functions of the nodes in the domain. Finally, using both synthetic and real-world datasets, we demonstrate that the two-phase greedy approach leads to good solutions when learning with finite sample sizes.
translated by 谷歌翻译
贝叶斯网络是一组$ N $随机变量的定向非循环图(DAG)(用顶点标识);贝叶斯网络分布(BND)是RV的概率分布,即在图中是马尔可夫的。这种模型的有限混合物是在较大的图表上对这些变量的投影,其具有额外的“隐藏”(或“隐藏”(或“潜伏”)随机变量$ U $,范围在$ \ {1,\ ldots,k \ $,以及从$ U $到其他每个其他顶点的指示边。这种类型的模型是对因因果推理的基础,其中$ U $模型是一种混杂效果。一个非常特殊的案例一直是在理论文学中的长期兴趣:空图。这种分布只是$ k $产品分布的混合。考虑到k $产品分布的混合物的联合分布,以识别产物分布及其混合重量,这一直是长期的问题。我们的结果是:(1)我们改善了从$ \ exp(o(k ^ 2))$到$ \ exp(o(k \ log k)的$ k $产品分布的混合物的示例复杂性(和运行时) )$。鉴于已知的$ \ exp(\ omega(k))$下限,这几乎可以最好。 (2)我们为非空图表提供了第一算法。最大程度为$ \ delta $的图表的复杂性为$ \ exp(o(k(\ delta ^ 2 + \ log k)))$。 (上述复杂性是近似和抑制辅助参数的依赖性。)
translated by 谷歌翻译