使用手动生成标签训练的卷积神经网络通常用于语义或实例分割。在精确的农业中,自动花探测方法使用监督模型和后处理技术,这些技术可能不会始终如一地表现为花朵的出现,并且数据采集条件有所不同。我们提出了一种自我监督的学习策略,以使用自动生成的伪标签来增强分割模型对不同花种物种的敏感性。我们采用数据增强和完善方法来提高模型预测的准确性。然后将增强的语义预测转换为全景伪标签,以迭代训练多任务模型。可以通过现有的后处理方法来完善自我监督的模型预测,以进一步提高其准确性。对多物种果树花数据集的评估表明,我们的方法的表现优于最先进的模型,而无需计算昂贵的后处理步骤,为花朵检测应用提供了新的基线。
translated by 谷歌翻译
We introduce a novel framework to track multiple objects in overhead camera videos for airport checkpoint security scenarios where targets correspond to passengers and their baggage items. We propose a Self-Supervised Learning (SSL) technique to provide the model information about instance segmentation uncertainty from overhead images. Our SSL approach improves object detection by employing a test-time data augmentation and a regression-based, rotation-invariant pseudo-label refinement technique. Our pseudo-label generation method provides multiple geometrically-transformed images as inputs to a Convolutional Neural Network (CNN), regresses the augmented detections generated by the network to reduce localization errors, and then clusters them using the mean-shift algorithm. The self-supervised detector model is used in a single-camera tracking algorithm to generate temporal identifiers for the targets. Our method also incorporates a multi-view trajectory association mechanism to maintain consistent temporal identifiers as passengers travel across camera views. An evaluation of detection, tracking, and association performances on videos obtained from multiple overhead cameras in a realistic airport checkpoint environment demonstrates the effectiveness of the proposed approach. Our results show that self-supervision improves object detection accuracy by up to $42\%$ without increasing the inference time of the model. Our multi-camera association method achieves up to $89\%$ multi-object tracking accuracy with an average computation time of less than $15$ ms.
translated by 谷歌翻译
为了提高实例级别检测/分割性能,现有的自我监督和半监督方法从未标记的数据提取非常任务 - 无关或非常任务特定的训练信号。我们认为这两种方法在任务特异性频谱的两端是任务性能的次优。利用太少的任务特定的培训信号导致底下地区任务的地面真理标签导致磨损,而相反的原因会在地面真理标签上过度装修。为此,我们提出了一种新的类别无关的半监督预测(CASP)框架,在提取来自未标记数据的训练信号中实现更有利的任务特异性平衡。与半监督学习相比,CASP通过忽略伪标签中的类信息并具有仅使用任务 - 不相关的未标记数据的单独预先预订阶段来减少训练信号的任务特异性。另一方面,CASP通过利用盒子/面具级伪标签来保留适量的任务特异性。因此,我们的预磨模模型可以更好地避免在下游任务上的FineTuned时避免在地面真理标签上抵抗/过度拟合。使用3.6M未标记的数据,我们在对象检测上实现了4.7%的显着性能增益。我们的预制模型还展示了对其他检测和分割任务/框架的优异可转移性。
translated by 谷歌翻译
深度学习感知模型需要大量标记的训练数据来实现良好的性能。虽然未标记的数据很容易获得,但标签的成本是令人禁止的,可以为公司或个人创造巨大的负担。最近,自我监督已成为利用未标记数据的替代方案。在本文中,我们提出了一种新的轻量级自我监督的学习框架,可以通过最小的额外计算成本提高监督的学习性能。在这里,我们介绍了一个简单而灵活的多任务共同训练框架,将自我监督的任务集成到任何监督任务中。我们的方法利用借口任务来产生最小的计算和参数开销,并对现有培训管道的最小中断。我们通过在不同的感知模型上使用两个自我监督任务,对象检测和Panoptic分段来展示我们框架的有效性。我们的结果表明,两种自我监督任务都可以提高监督任务的准确性,同时展示与其他未标记数据一起使用时的强大域适应能力。
translated by 谷歌翻译
基于高质量标签的鱼类跟踪和细分的DNN很昂贵。替代无监督的方法取决于视频数据中自然发生的空间和时间变化来生成嘈杂的伪界图标签。这些伪标签用于训练多任务深神经网络。在本文中,我们提出了一个三阶段的框架,用于强大的鱼类跟踪和分割,其中第一阶段是光流模型,该模型使用帧之间的空间和时间一致性生成伪标签。在第二阶段,一个自我监督的模型会逐步完善伪标签。在第三阶段,精制标签用于训练分割网络。在培训或推理期间没有使用人类注释。进行了广泛的实验来验证我们在三个公共水下视频数据集中的方法,并证明它对视频注释和细分非常有效。我们还评估框架对不同成像条件的鲁棒性,并讨论当前实施的局限性。
translated by 谷歌翻译
Recently deep neural networks, which require a large amount of annotated samples, have been widely applied in nuclei instance segmentation of H\&E stained pathology images. However, it is inefficient and unnecessary to label all pixels for a dataset of nuclei images which usually contain similar and redundant patterns. Although unsupervised and semi-supervised learning methods have been studied for nuclei segmentation, very few works have delved into the selective labeling of samples to reduce the workload of annotation. Thus, in this paper, we propose a novel full nuclei segmentation framework that chooses only a few image patches to be annotated, augments the training set from the selected samples, and achieves nuclei segmentation in a semi-supervised manner. In the proposed framework, we first develop a novel consistency-based patch selection method to determine which image patches are the most beneficial to the training. Then we introduce a conditional single-image GAN with a component-wise discriminator, to synthesize more training samples. Lastly, our proposed framework trains an existing segmentation model with the above augmented samples. The experimental results show that our proposed method could obtain the same-level performance as a fully-supervised baseline by annotating less than 5% pixels on some benchmarks.
translated by 谷歌翻译
点云的Panoptic分割是一种重要的任务,使自动车辆能够使用高精度可靠的激光雷达传感器来理解其附近。现有的自上而下方法通过将独立的任务特定网络或转换方法从图像域转换为忽略激光雷达数据的复杂性,因此通常会导致次优性性能来解决这个问题。在本文中,我们提出了新的自上而下的高效激光乐光线分割(有效的LID)架构,该架构解决了分段激光雷达云中的多种挑战,包括距离依赖性稀疏性,严重的闭塞,大规模变化和重新投影误差。高效地板包括一种新型共享骨干,可以通过加强的几何变换建模容量进行编码,并聚合语义丰富的范围感知多尺度特征。它结合了新的不变语义和实例分段头以及由我们提出的Panoptic外围损耗功能监督的Panoptic Fusion模块。此外,我们制定了正则化的伪标签框架,通过对未标记数据的培训进行进一步提高高效性的性能。我们在两个大型LIDAR数据集中建议模型基准:NUSCENES,我们还提供了地面真相注释和Semantickitti。值得注意的是,高效地将在两个数据集上设置新的最先进状态。
translated by 谷歌翻译
临床医生在手术室(OR)的细粒度定位是设计新一代或支持系统的关键组成部分。需要基于人像素的分段和身体视觉计算机的计算机视觉模型检测,以更好地了解OR的临床活动和空间布局。这是具有挑战性的,这不仅是因为或图像与传统视觉数据集有很大不同,还因为在隐私问题上很难收集和生成数据和注释。为了解决这些问题,我们首先研究了如何在低分辨率图像上进行姿势估计和实例分割,而下采样因子从1x到12倍进行下采样因子。其次,为了解决域的偏移和缺乏注释,我们提出了一种新型的无监督域适应方法,称为适配器,以使模型从野外标记的源域中适应统计上不同的未标记目标域。我们建议在未标记的目标域图像的不同增强上利用明确的几何约束,以生成准确的伪标签,并使用这些伪标签在自我训练框架中对高分辨率和低分辨率或图像进行训练。此外,我们提出了分离的特征归一化,以处理统计上不同的源和目标域数据。对两个或数据集MVOR+和TUM-或TUM-或测试的详细消融研究的广泛实验结果表明,我们方法对强构建的基线的有效性,尤其是在低分辨率的隐私性或图像上。最后,我们在大规模可可数据集上显示了我们作为半监督学习方法(SSL)方法的普遍性,在这里,我们获得了可比较的结果,而对经过100%标记的监督培训的模型的标签监督只有1%。 。
translated by 谷歌翻译
深度学习已成为火星探索的强大工具。火星地形细分是一项重要的火星愿景任务,它是漫游者自动计划和安全驾驶的基础。但是,现有的基于深度学习的地形细分方法遇到了两个问题:一个是缺乏足够的详细和高信心注释,另一个是模型过度依赖于注释的培训数据。在本文中,我们从联合数据和方法设计的角度解决了这两个问题。我们首先提出了一个新的火星地形细分数据集,该数据集包含6K高分辨率图像,并根据置信度稀疏注释,以确保标签的高质量。然后从这些稀疏的数据中学习,我们为火星地形细分的基于表示的学习框架,包括一个自我监督的学习阶段(用于预训练)和半监督的学习阶段(用于微调)。具体而言,对于自我监督的学习,我们设计了一个基于掩盖图像建模(MIM)概念的多任务机制,以强调图像的纹理信息。对于半监督的学习,由于我们的数据集很少注释,因此我们鼓励该模型通过在线生成和利用伪标签来挖掘每个图像中未标记的区域的信息。我们将数据集和方法命名为MARS(S $^{5} $ MARS)的自我监督和半监督分割。实验结果表明,我们的方法可以超越最先进的方法,并通过很大的边距提高地形分割性能。
translated by 谷歌翻译
我们对最近的自我和半监督ML技术进行严格的评估,从而利用未标记的数据来改善下游任务绩效,以河床分割的三个遥感任务,陆地覆盖映射和洪水映射。这些方法对于遥感任务特别有价值,因为易于访问未标记的图像,并获得地面真理标签通常可以昂贵。当未标记的图像(标记数据集之外)提供培训时,我们量化性能改进可以对这些遥感分割任务进行期望。我们还设计实验以测试这些技术的有效性,当测试集相对于训练和验证集具有域移位时。
translated by 谷歌翻译
深度学习的快速发展在分割方面取得了长足的进步,这是计算机视觉的基本任务之一。但是,当前的细分算法主要取决于像素级注释的可用性,这些注释通常昂贵,乏味且费力。为了减轻这一负担,过去几年见证了越来越多的关注,以建立标签高效,深度学习的细分算法。本文对标签有效的细分方法进行了全面的审查。为此,我们首先根据不同类型的弱标签提供的监督(包括没有监督,粗略监督,不完整的监督和嘈杂的监督和嘈杂的监督),首先开发出一种分类法来组织这些方法,并通过细分类型(包括语义细分)补充,实例分割和全景分割)。接下来,我们从统一的角度总结了现有的标签有效的细分方法,该方法讨论了一个重要的问题:如何弥合弱监督和密集预测之间的差距 - 当前的方法主要基于启发式先导,例如交叉像素相似性,跨标签约束,跨视图一致性,跨图像关系等。最后,我们分享了对标签有效深层细分的未来研究方向的看法。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
微创手术中的手术工具检测是计算机辅助干预措施的重要组成部分。当前的方法主要是基于有监督的方法,这些方法需要大量的完全标记的数据来培训监督模型,并且由于阶级不平衡问题而患有伪标签偏见。但是,带有边界框注释的大图像数据集通常几乎无法使用。半监督学习(SSL)最近出现了仅使用适度的注释数据训练大型模型的一种手段。除了降低注释成本。 SSL还显示出希望产生更强大和可推广的模型。因此,在本文中,我们在手术工具检测范式中介绍了半监督学习(SSL)框架,该框架旨在通过知识蒸馏方法来减轻培训数据的稀缺和数据失衡。在拟议的工作中,我们培训了一个标有数据的模型,该模型启动了教师学生的联合学习,在该学习中,学生接受了来自未标记数据的教师生成的伪标签的培训。我们提出了一个多级距离,在检测器的利益区域头部具有基于保证金的分类损失函数,以有效地将前景类别与背景区域隔离。我们在M2CAI16-Tool-locations数据集上的结果表明,我们的方法在不同的监督数据设置(1%,2%,5%,注释数据的10%)上的优越性,其中我们的模型可实现8%,12%和27的总体改善在最先进的SSL方法和完全监督的基线上,MAP中的%(在1%标记的数据上)。该代码可在https://github.com/mansoor-at/semi-supervise-surgical-tool-det上获得
translated by 谷歌翻译
Semi-supervised object detection is important for 3D scene understanding because obtaining large-scale 3D bounding box annotations on point clouds is time-consuming and labor-intensive. Existing semi-supervised methods usually employ teacher-student knowledge distillation together with an augmentation strategy to leverage unlabeled point clouds. However, these methods adopt global augmentation with scene-level transformations and hence are sub-optimal for instance-level object detection. In this work, we propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection. In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds, making the augmented data more useful for object detector training. Extensive experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods under various experimental settings. The source code will be available at https://github.com/nomiaro/OPA.
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
强大的海上障碍物检测对于安全导航自动船和及时避免碰撞至关重要。当前的最新技术基于在大型数据集上训练的深度分割网络。但是,此类数据集的每个像素地面真相标签是劳动密集型且昂贵的。我们提出了一个新的脚手架学习制度(SLR),该制度利用薄弱的注释,包括水边缘,地平线和障碍物边界框来训练基于细分的障碍物检测网络,从而将所需的地面真相标记工作减少了21倍。 SLR从弱注释中训练初始模型,然后在重新估计分割伪标签和改进网络参数之间交替。实验表明,在弱标签上使用SLR训练的海上障碍分割网络不仅匹配,而且优于接受密集地面真相标签的相同网络,这是一个了不起的结果。除了提高精度外,SLR还增加了域的概括,可用于较低的手动注释负载,用于域的适应性。代码和预培训模型可在https://github.com/lojzezust/slr上找到。
translated by 谷歌翻译
This paper presents the first attempt to learn semantic boundary detection using image-level class labels as supervision. Our method starts by estimating coarse areas of object classes through attentions drawn by an image classification network. Since boundaries will locate somewhere between such areas of different classes, our task is formulated as a multiple instance learning (MIL) problem, where pixels on a line segment connecting areas of two different classes are regarded as a bag of boundary candidates. Moreover, we design a new neural network architecture that can learn to estimate semantic boundaries reliably even with uncertain supervision given by the MIL strategy. Our network is used to generate pseudo semantic boundary labels of training images, which are in turn used to train fully supervised models. The final model trained with our pseudo labels achieves an outstanding performance on the SBD dataset, where it is as competitive as some of previous arts trained with stronger supervision.
translated by 谷歌翻译
Open-World实例细分(OWIS)旨在从图像中分割类不足的实例,该图像具有广泛的现实应用程序,例如自主驾驶。大多数现有方法遵循两阶段的管道:首先执行类不足的检测,然后再进行特定于类的掩模分段。相比之下,本文提出了一个单阶段框架,以直接为每个实例生成掩码。另外,实例掩码注释在现有数据集中可能很吵。为了克服这个问题,我们引入了新的正规化损失。具体而言,我们首先训练一个额外的分支来执行预测前景区域的辅助任务(即属于任何对象实例的区域),然后鼓励辅助分支的预测与实例掩码的预测一致。关键的见解是,这种交叉任务一致性损失可以充当误差校正机制,以打击注释中的错误。此外,我们发现所提出的跨任务一致性损失可以应用于图像,而无需任何注释,将自己借给了半监督的学习方法。通过广泛的实验,我们证明了所提出的方法可以在完全监督和半监督的设置中获得令人印象深刻的结果。与SOTA方法相比,所提出的方法将$ ap_ {100} $得分提高了4.75 \%\%\%\ rightarrow $ uvo设置和4.05 \%\%\%\%\%\%\ rightarrow $ uvo设置。在半监督学习的情况下,我们的模型仅使用30 \%标记的数据学习,甚至超过了其完全监督的数据,并具有5​​0 \%标记的数据。该代码将很快发布。
translated by 谷歌翻译
必须在密集的注释图像上培训最先进的实例分段方法。虽然一般而言,这一要求对于生物医学图像尤其令人生畏,其中域专业知识通常需要注释,没有大的公共数据收集可用于预培训。我们建议通过基于非空间嵌入的非空间嵌入的联盟分割方法来解决密集的注释瓶颈,该方法利用所学习的嵌入空间的结构以可分散的方式提取单个实例。然后可以将分割损耗直接应用于实例,整体管道可以以完全或弱监督的方式培训,包括积极解贴的监管的具有挑战性的情况,其中为未标记的部分引入了一种新的自我监督的一致性损失训练数据。我们在不同显微镜模型以及城市景观和CVPPP实例分段基准中评估了对2D和3D分段问题的提出的方法,在后者上实现最先进的结果。该代码可用于:https://github.com/kreshuklab/spoco
translated by 谷歌翻译