Advanced methods of applying deep learning to structured data such as graphs have been proposed in recent years. In particular, studies have focused on generalizing convolutional neural networks to graph data, which includes redefining the convolution and the downsampling (pooling) operations for graphs. The method of generalizing the convolution operation to graphs has been proven to improve performance and is widely used. However, the method of applying downsampling to graphs is still difficult to perform and has room for improvement. In this paper, we propose a graph pooling method based on selfattention. Self-attention using graph convolution allows our pooling method to consider both node features and graph topology. To ensure a fair comparison, the same training procedures and model architectures were used for the existing pooling methods and our method. The experimental results demonstrate that our method achieves superior graph classification performance on the benchmark datasets using a reasonable number of parameters.
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs-a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DIFFPOOL, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DIFFPOOL learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DIFFPOOL yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
translated by 谷歌翻译
尽管图形神经网络(GNNS)已成功地用于节点分类任务并在图中链接预测任务,但学习图级表示仍然是一个挑战。对于图级表示,重要的是要学习相邻节点的表示形式,即聚合和图形结构信息。为此目标开发了许多图形合并方法。但是,大多数现有的合并方法都使用K-HOP社区,而无需考虑图中的明确结构信息。在本文中,我们提出了使用先前的图形结构来克服限制的结构原型指导池(SPGP)。 SPGP将图形结构制定为可学习的原型向量,并计算节点和原型矢量之间的亲和力。这导致了一种新颖的节点评分方案,该方案在封装图形的有用结构的同时优先考虑信息性节点。我们的实验结果表明,SPGP的精度和可扩展性都优于图形分类基准数据集上的最先进的图形合并方法。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
图表卷积网络(GCNS)已经实现了最近处理各种图形结构数据的显着学习能力。通常,由于传统GCNS中的图形卷积是Laplacian平滑的特殊形式,因此,Deep GCN不起作用很好,因此使不同节点的表示无法区分。在文献中,在GCN中采用多尺度信息来增强GCN的表现力。但是,过度平滑现象作为GCN的关键问题仍有待解决和调查。在本文中,我们通过将自我注意机制和多尺度信息结合到GCNS设计中,提出了两种新的多尺度GCN框架。我们的方法大大提高了GCNS模型的计算效率和预测准确性。对两个节点分类和图表分类的广泛实验证明了几种最先进的GCNS的有效性。值得注意的是,提出的两个架构可以有效地减轻GCN的过平滑问题,而我们的模型层甚至可以增加到64美元。
translated by 谷歌翻译
图表神经网络(GNN)已被广泛用于学习图形结构数据的矢量表示,并实现比传统方法更好的任务性能。 GNN的基础是消息传递过程,它将节点中的信息传播到其邻居。由于该过程每层进行一个步骤,因此节点之间的信息传播的范围在下层中很小,并且它朝向更高的层扩展。因此,GNN模型必须深入地捕获图中的全局结构信息。另一方面,众所周知,深入的GNN模型遭受性能下降,因为它们丢失了节点的本地信息,这对于良好的模型性能至关重要,通过许多消息传递步骤。在本研究中,我们提出了用于图形级分类任务的多级注意汇总(MLAP),这可以适应图表中的本地和全局结构信息。对于每个消息传递步骤,它具有注意池层,通过统一层方格图表示来计算最终图表示。 MLAP架构允许模型利用具有多个级别的本地图形的结构信息,因为它在由于过度的过天气丢失时保留了层面信息。我们的实验结果表明,与基线架构相比,MLAP架构提高了图形分类性能。此外,图表表示的分析表明,来自多个级别的地方的聚合信息确实具有提高学习图表表示的可怜的潜力。
translated by 谷歌翻译
在非欧几里得空间上卷积成功之后,在有关图形的各种任务上也验证了相应的合并方法。但是,由于固定的压缩配额和逐步合并设计,这些层次池方法仍然遭受局部结构损害和次优问题的困扰。在这项工作的启发下,我们提出了一种层次的合并方法,即SEP解决这两个问题。具体而言,在不分配特定层的压缩配额的情况下,全局优化算法旨在生成一次集群分配矩阵以一次汇总。然后,我们介绍了在环和网格合成图的重建中先前方法中局部结构损害的例证。除SEP外,我​​们还将分别设计两个分类模型,分别用于图形分类和节点分类。结果表明,SEP在图形分类基准上优于最先进的图形合并方法,并在节点分类上获得了卓越的性能。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
增强图在正规化图形神经网络(GNNS)方面起着至关重要的作用,该图形以信息传递的形式利用沿图的边缘进行信息交换。由于其有效性,简单的边缘和节点操作(例如,添加和删除)已被广泛用于图表增强中。然而,这种常见的增强技术可以显着改变原始图的语义,从而导致过度侵略性增强,从而在GNN学习中拟合不足。为了解决掉落或添加图形边缘和节点引起的此问题,我们提出了SoftEdge,将随机权重分配给给定图的一部分以进行增强。 SoftEdge生成的合成图保持与原始图相同的节点及其连接性,从而减轻原始图的语义变化。我们从经验上表明,这种简单的方法获得了与流行节点和边缘操纵方法的卓越精度,并且具有明显的弹性,可抵御GNN深度的准确性降解。
translated by 谷歌翻译
基于视频的人重新识别(REID)旨在识别多个非重叠摄像机的给定的行人视频序列。为了汇总视频样本的时间和空间特征,引入了图神经网络(GNN)。但是,现有的基于图的模型(例如STGCN)在节点功能上执行\ textIt {mean}/\ textit {max boming}以获取图表表示,该图表忽略了图形拓扑和节点的重要性。在本文中,我们建议图形池网络(GPNET)学习视频检索的多粒度图表示,其中实现了\ textit {Graph boming layer},以简化图形。我们首先构建了一个多粒图,其节点特征表示由骨架学到的图像嵌入,并且在颞和欧几里得邻域节点之间建立了边缘。然后,我们实现多个图形卷积层以在图上执行邻域聚集。为了下图,我们提出了一个多头全注意图池(MHFAPOOL)层,该图集合了现有节点群集和节点选择池的优势。具体而言,MHFAPOOL将全部注意矩阵的主要特征向量作为聚合系数涉及每个汇总节点中的全局图信息。广泛的实验表明,我们的GPNET在四个广泛使用的数据集(即火星,dukemtmc-veneoreid,ilids-vid and Prid-2011)上实现了竞争结果。
translated by 谷歌翻译
In the last few years, graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. This emerging field has witnessed an extensive growth of promising techniques that have been applied with success to computer science, mathematics, biology, physics and chemistry. But for any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress. This led us in March 2020 to release a benchmark framework that i) comprises of a diverse collection of mathematical and real-world graphs, ii) enables fair model comparison with the same parameter budget to identify key architectures, iii) has an open-source, easy-to-use and reproducible code infrastructure, and iv) is flexible for researchers to experiment with new theoretical ideas. As of December 2022, the GitHub repository has reached 2,000 stars and 380 forks, which demonstrates the utility of the proposed open-source framework through the wide usage by the GNN community. In this paper, we present an updated version of our benchmark with a concise presentation of the aforementioned framework characteristics, an additional medium-sized molecular dataset AQSOL, similar to the popular ZINC, but with a real-world measured chemical target, and discuss how this framework can be leveraged to explore new GNN designs and insights. As a proof of value of our benchmark, we study the case of graph positional encoding (PE) in GNNs, which was introduced with this benchmark and has since spurred interest of exploring more powerful PE for Transformers and GNNs in a robust experimental setting.
translated by 谷歌翻译
近年来,图形变压器在各种图形学习任务上表现出了优势。但是,现有图形变压器的复杂性与节点的数量二次缩放,因此难以扩展到具有数千个节点的图形。为此,我们提出了一个邻域聚集图变压器(Nagphormer),该变压器可扩展到具有数百万节点的大图。在将节点特征馈送到变压器模型中之前,Nagphormer构造令牌由称为Hop2Token的邻域聚合模块为每个节点。对于每个节点,Hop2token聚合从每个跳跃到表示形式的邻域特征,从而产生一系列令牌向量。随后,不同HOP信息的结果序列是变压器模型的输入。通过将每个节点视为一个序列,可以以迷你批量的方式训练Nagphormer,从而可以扩展到大图。 Nagphormer进一步开发了基于注意力的读数功能,以便学习每个跳跃的重要性。我们在各种流行的基准测试中进行了广泛的实验,包括六个小数据集和三个大数据集。结果表明,Nagphormer始终优于现有的图形变压器和主流图神经网络。
translated by 谷歌翻译
协同的药物组合为增强治疗功效和减少不良反应提供了巨大的潜力。然而,由于未知的因果疾病信号通路,有效和协同的药物组合预测仍然是一个悬而未决的问题。尽管已经提出了各种深度学习(AI)模型来定量预测药物组合的协同作用。现有深度学习方法的主要局限性是它们本质上是不可解释的,这使得AI模型的结论是对人类专家的非透明度的结论,因此限制了模型结论的鲁棒性和这些模型在现实世界中的实施能力人类医疗保健。在本文中,我们开发了一个可解释的图神经网络(GNN),该神经网络(GNN)揭示了通过挖掘非常重要的亚分子网络来揭示协同(MOS)的基本基本治疗靶标和机制。可解释的GNN预测模型的关键点是一个新颖的图池层,基于自我注意的节点和边缘池(此后为SANEPOOL),可以根据节点特征和图表计算节点和边缘的注意力评分(重要性)拓扑。因此,提出的GNN模型提供了一种系统的方法来预测和解释基于检测到的关键亚分子网络的药物组合协同作用。我们评估了来自NCI Almanac药物组合筛查数据的46个核心癌症信号通路和药物组合的基因制造的分子网络。实验结果表明,1)Sanepool可以在其他流行的图神经网络中实现当前的最新性能; 2)由SANEPOOOL检测到的亚分子网络是可自我解释的,并且可以鉴定协同的药物组合。
translated by 谷歌翻译
随着传感技术的进步,多元时间序列分类(MTSC)最近受到了相当大的关注。基于深度学习的MTSC技术主要依赖于卷积或经常性神经网络,主要涉及单时间序列的时间依赖性。结果,他们努力直接在多变量变量中表达成对依赖性。此外,基于图形神经网络(GNNS)的当前空间 - 时间建模(例如,图形分类)方法本质上是平的,并且不能以分层方式聚合集线器数据。为了解决这些限制,我们提出了一种基于新的图形汇集框架MTPOOL,以获得MTS的表现力全球表示。我们首先通过采用通过图形结构学习模块的相互作用来将MTS切片转换为曲线图,并通过时间卷积模块获得空间 - 时间图节点特征。为了获得全局图形级表示,我们设计了基于“编码器 - 解码器”的变形图池池模块,用于为群集分配创建自适应质心。然后我们将GNN和我们所提出的变分图层汇集层组合用于联合图表示学习和图形粗糙化,之后该图逐渐赋予一个节点。最后,可差异化的分类器将此粗糙的表示来获取最终预测的类。 10个基准数据集的实验表明MTPOOL优于MTSC任务中最先进的策略。
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
图形内核是历史上最广泛使用的图形分类任务的技术。然而,由于图的手工制作的组合特征,这些方法具有有限的性能。近年来,由于其性能卓越,图形神经网络(GNNS)已成为与下游图形相关任务的最先进的方法。大多数GNN基于消息传递神经网络(MPNN)框架。然而,最近的研究表明,MPNN不能超过Weisfeiler-Lehman(WL)算法在图形同构术中的力量。为了解决现有图形内核和GNN方法的限制,在本文中,我们提出了一种新的GNN框架,称为\ Texit {内核图形神经网络}(Kernnns),该框架将图形内核集成到GNN的消息传递过程中。通过卷积神经网络(CNNS)中的卷积滤波器的启发,KERGNNS采用可训练的隐藏图作为绘图过滤器,该绘图过滤器与子图组合以使用图形内核更新节点嵌入式。此外,我们表明MPNN可以被视为Kergnns的特殊情况。我们将Kergnns应用于多个与图形相关的任务,并使用交叉验证来与基准进行公平比较。我们表明,与现有的现有方法相比,我们的方法达到了竞争性能,证明了增加GNN的表现能力的可能性。我们还表明,KERGNNS中的训练有素的图形过滤器可以揭示数据集的本地图形结构,与传统GNN模型相比,显着提高了模型解释性。
translated by 谷歌翻译
随着各个领域的深度学习的巨大成功,图形神经网络(GNNS)也成为图形分类的主要方法。通过全局读出操作,只会聚合所有节点(或节点群集)表示,现有的GNN分类器获得输入图的图级表示,并使用表示来预测其类标签。但是,这种全局聚合不考虑每个节点的结构信息,这导致全局结构的信息丢失。特别地,它通过对所有节点表示来强制执行分类器的相同权重参数来限制辨别力;在实践中,他们中的每一个都有助于不同于其结构语义的目标类别。在这项工作中,我们提出了结构性语义读数(SSREAD)来总结位置级节点表示,这允许为分类模拟特定位置的权重参数,以及有效地捕获与全局结构相关的图形语义。给定输入图,SSREAD旨在通过使用其节点与结构原型之间的语义对齐来识别结构上有意义的位置,该结构原型编码每个位置的原型特征。结构原型经过优化,以最小化所有训练图的对准成本,而其他GNN参数训练以预测类标签。我们的实验结果表明,SSREAD显着提高了GNN分类器的分类性能和可解释性,同时兼容各种聚合函数,GNN架构和学习框架。
translated by 谷歌翻译
卷积神经网络(CNN)已通过卷积和汇总实现了图像分类的重大进展。特别是,图像池将连接的离散网格转换为具有相同连接性的还原网格,并允许还原功能考虑图像的所有像素。但是,对于图形而不存在满足此类属性的合并。实际上,某些方法基于一个顶点选择步骤,该步骤会导致重要信息丢失。其他方法学习了顶点集的模糊聚类,该聚类几乎诱导了几乎完全减少的图形。我们建议使用名为MivSpool的新合并方法克服这两个问题。该方法基于使用最大独立顶点集(MIV)和将其余顶点分配给幸存者的最大独立顶点集(MIV)的选择的顶点。因此,我们的方法不会丢弃任何顶点信息,也不会人为地增加图的密度。实验结果表明,各种标准数据集上的图形分类的精度有所提高。
translated by 谷歌翻译
图形神经网络(GNNS)在各种基于图形的应用中显示了优势。大多数现有的GNNS假设图形结构的强大奇妙并应用邻居的置换不变本地聚合以学习每个节点的表示。然而,它们未能概括到异质图,其中大多数相邻节点具有不同的标签或特征,并且相关节点远处。最近的几项研究通过组合中央节点的隐藏表示(即,基于多跳的方法)的多个跳数来解决这个问题,或者基于注意力分数对相邻节点进行排序(即,基于排名的方法)来解决这个问题。结果,这些方法具有一些明显的限制。一方面,基于多跳的方法没有明确区分相关节点的大量多跳社区,导致严重的过平滑问题。另一方面,基于排名的模型不与结束任务进行联合优化节点排名,并导致次优溶液。在这项工作中,我们呈现图表指针神经网络(GPNN)来解决上述挑战。我们利用指针网络从大量的多跳邻域选择最相关的节点,这根据与中央节点的关系来构造有序序列。然后应用1D卷积以从节点序列中提取高级功能。 GPNN中的基于指针网络的Ranker是以端到端的方式与其他部件进行联合优化的。在具有异质图的六个公共节点分类数据集上进行了广泛的实验。结果表明,GPNN显着提高了最先进方法的分类性能。此外,分析还揭示了拟议的GPNN在过滤出无关邻居并减少过平滑的特权。
translated by 谷歌翻译
图形神经网络已成为从图形结构数据学习的不可缺少的工具之一,并且它们的实用性已在各种各样的任务中显示。近年来,建筑设计的巨大改进,导致各种预测任务的性能更好。通常,这些神经架构在同一层中使用可知的权重矩阵组合节点特征聚合和特征转换。这使得分析从各种跳过的节点特征和神经网络层的富有效力来挑战。由于不同的图形数据集显示在特征和类标签分布中的不同级别和异常级别,因此必须了解哪些特征对于没有任何先前信息的预测任务是重要的。在这项工作中,我们将节点特征聚合步骤和深度与图形神经网络分离,并经验分析了不同的聚合特征在预测性能中发挥作用。我们表明,并非通过聚合步骤生成的所有功能都很有用,并且通常使用这些较少的信息特征可能对GNN模型的性能有害。通过我们的实验,我们表明学习这些功能的某些子集可能会导致各种数据集的性能更好。我们建议使用Softmax作为常规器,并从不同跳距的邻居聚合的功能的“软选择器”;和L2 - GNN层的标准化。结合这些技术,我们呈现了一个简单浅的模型,特征选择图神经网络(FSGNN),并经验展示所提出的模型比九个基准数据集中的最先进的GNN模型实现了可比或甚至更高的准确性节点分类任务,具有显着的改进,可达51.1%。
translated by 谷歌翻译