我们解决了在室内环境中对于具有有限感应功能和有效载荷/功率限制的微型航空车的高效3-D勘探问题。我们开发了一个室内探索框架,该框架利用学习来预测看不见的区域的占用,提取语义特征,样本观点,以预测不同探索目标的信息收益以及计划的信息轨迹,以实现安全和智能的探索。在模拟和实际环境中进行的广泛实验表明,就结构化室内环境中的总路径长度而言,所提出的方法的表现优于最先进的勘探框架,并且在勘探过程中的成功率更高。
translated by 谷歌翻译
对未知环境的探索是机器人技术中的一个基本问题,也是自治系统应用中的重要组成部分。探索未知环境的一个主要挑战是,机器人必须计划每个时间步骤可用的有限信息。尽管大多数当前的方法都依靠启发式方法和假设来根据这些部分观察来规划路径,但我们提出了一种新颖的方式,通过利用3D场景完成来将深度学习整合到探索中,以获取知情,安全,可解释的探索映射和计划。我们的方法,SC-explorer,使用新型的增量融合机制和新提出的分层多层映射方法结合了场景的完成,以确保机器人的安全性和效率。我们进一步提出了一种信息性的路径计划方法,利用了我们的映射方法的功能和新颖的场景完整感知信息增益。虽然我们的方法通常适用,但我们在微型航空车辆(MAV)的用例中进行了评估。我们仅使用移动硬件彻底研究了高保真仿真实验中的每个组件,并证明我们的方法可以使环境的覆盖范围增加73%,而不是基线,而MAP准确性的降低仅最少。即使最终地图中未包含场景的完成,我们也可以证明它们可以用于指导机器人选择更多信息的路径,从而加快机器人传感器的测量值35%。我们将我们的方法作为开源。
translated by 谷歌翻译
尽管使用多个无人机(UAV)具有快速自主探索的巨大潜力,但它的关注程度很少。在本文中,我们提出了赛车手,这是一种使用分散无人机的舰队的快速协作探索方法。为了有效派遣无人机,使用了基于在线HGRID空间分解的成对交互。它可确保仅使用异步和有限的通信同时探索不同的区域。此外,我们优化了未知空间的覆盖路径,并通过电容的车辆路由问题(CVRP)配方平衡分区到每个UAV的工作负载。鉴于任务分配,每个无人机都会不断更新覆盖路径,并逐步提取关键信息以支持探索计划。分层规划师可以找到探索路径,完善本地观点并生成序列的最小时间轨迹,以敏捷,安全地探索未知空间。对所提出的方法进行了广泛的评估,显示出较高的勘探效率,可伸缩性和对有限交流的鲁棒性。此外,我们第一次与现实世界中的多个无人机进行了完全分散的协作探索。我们将作为开源软件包发布实施。
translated by 谷歌翻译
未知环境的探索和映射是自动机器人应用程序中的一项基本任务。在本文中,我们介绍了一个完整的框架,用于在未知的地下地区部署MAVS中的MAV。探索算法的主要动机是描绘机器人的下一个最佳边界,以便可以快速,安全但有效的方式覆盖新的地面。拟议的框架使用一种新颖的边界选择方法,该方法还有助于在地下洞穴,矿山和城市地区等受阻区中自动驾驶的安全导航。这项工作中提出的框架分叉了本地和全球探索中的勘探问题。拟议的勘探框架也可以根据机器人上的计算资源进行适应,这意味着可以在探索速度和地图质量之间进行权衡。这样的功能使建议的框架可以在地下探索,映射以及快速搜索和救援方案中部署。整个系统被认为是在类似隧道的环境中导航和物体定位的低复杂性和基线解决方案。在详细的仿真研究中评估了所提出的框架的性能,并与针对DARPA Sub-T挑战开发的高级探索计划框架进行了比较,这将在本文中介绍。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
自主探索是移动机器人的重要功能,因为他们的大多数应用程序都需要有效收集有关其周围环境的信息。在文献中,有几种方法,从基于边境的方法到涉及计划本地和全球探索道路的能力的混合解决方案,但只有少数人专注于通过正确调整计划的轨迹来改善本地探索,通常会导致导致“停留”行为。在这项工作中,我们提出了一种新颖的RRT启发的B \'Ezier的次数次数轨迹计划者,能够处理快速局部探索的问题。高斯工艺推论用于保证快速探索获得的检索,同时仍与勘探任务保持一致。将所提出的方法与其他可用的最先进算法进行比较,并在现实情况下进行了测试。实施的代码将作为开源代码公开发布,以鼓励进一步的开发和基准测试。
translated by 谷歌翻译
我们提出了一种新颖的方法,以基于在线RGBD重建与语义分割的在线RGBD重建,提出了一种对未知的室内场景的机器人工作的主动理解。在我们的方法中,探索机器人扫描是由场景中语义对象的识别和分割的驱动和定位。我们的算法基于体积深度融合框架(例如,KinectFusion)之上,并在在线重建卷上执行实时Voxel的语义标记。机器人通过在2D位置和方位角旋转的3D空间上参数化的在线估计的离散观看截由场(VSF)。 VSF为每个网格存储相应视图的分数,测量它减少了几何重建和语义标记的不确定性(熵)。基于VSF,我们选择每个时间步骤的下一个最佳视图(NBV)作为目标。然后,我们通过沿路径和轨迹最大化积分观看分数(信息增益)来共同优化遍历两个相邻的NBV之间的横向路径和相机轨迹。通过广泛的评估,我们表明我们的方法在探索性扫描期间实现了高效准确的在线场景解析。
translated by 谷歌翻译
探索是机器人技术中的一个基本问题。尽管基于抽样的计划者表现出高性能,但它们通常是计算大量的,并且可以表现出较高的差异。为此,我们建议直接根据机器人地图中的空间上下文来了解信息意见的基本分布。我们进一步探索了各种方法来学习信息增益。我们在彻底的实验评估中表明,我们提出的系统将勘探性能提高了多达28%的经典方法,并发现除了抽样分布外,学习收益可以提供有利的性能与计算构成系统的计算权衡。我们在仿真和低成本移动机器人中证明了我们的系统将其概括为不同的环境。
translated by 谷歌翻译
陆地 - 空中双模车辆在学术界和工业中绽放,因为它们融入了空中车辆的高流动性和地面车辆的长期耐力。在这项工作中,我们提出了一种自主和自适应的导航框架,为这类车辆带来完全自主权。该框架主要包括1)分层运动规划器,在未知环境中产生安全和低功率的地面 - 鸟轨迹,2)统一运动控制器,其动态地调整陆地运动中的能量消耗。广泛的现实实验和基准比较是在定制的机器人平台上进行的,以验证所提出的框架的稳健性和性能。在测试期间,机器人安全地穿越了陆地集成流动性的复杂环境,并在地面运动中实现了7美元的节能。最后,我们将为社区的引用发出我们的代码和硬件配置。
translated by 谷歌翻译
本文通过开发一种层次碰撞避免方法来改善基于安全的多旋转器的近电视,该方法根据环境复杂性和感知约束来调节最大速度。在表现出不同混乱的环境中,安全速度调制具有挑战性。现有方法固定了最大速度和地图分辨率,该方法可防止车辆进入狭窄的空间,并将认知负荷置于操作员上的速度。我们通过提出一种高速公路(10 Hz)的远程操作方法来解决这些差距,该方法通过分层碰撞检查调节最大车辆速度。分层碰撞检查器同时适应当地地图的体素尺寸和最大车辆速度,以确保运动计划安全。在模拟和现实世界实验中评估了所提出的方法,并将其与基于非自适应运动原语的远程操作方法进行了比较。结果证明了所提出的详细方法方法的优势以及完成任务的能力,而无需用户指定最大车辆速度。
translated by 谷歌翻译
微型航空车(MAV)具有很高的信息收集任务的潜力,以支持搜索和救援方案中的情况意识。在这种情况下,手动控制MAV需要经验丰富的飞行员,并且容易出错,尤其是在真正紧急情况的压力下。灾难情景的条件对于自动MAV系统也充满挑战。通常不知道环境,GNSS可能并不总是可用。我们介绍了一个不依赖全球定位系统的未知环境中自动MAV航班的系统。该方法在多个搜索和救援方案中进行评估,即使在室内和室外区域之间过渡时,也可以进行安全的自动飞行。
translated by 谷歌翻译
导航动态环境要求机器人生成无碰撞的轨迹,并积极避免移动障碍。大多数以前的作品都基于一个单个地图表示形式(例如几何,占用率或ESDF地图)设计路径计划算法。尽管他们在静态环境中表现出成功,但由于地图表示的限制,这些方法无法同时可靠地处理静态和动态障碍。为了解决该问题,本文提出了一种利用机器人在板载视觉的基于梯度的B-Spline轨迹优化算法。深度视觉使机器人能够基于体素图以几何形式跟踪和表示动态对象。拟议的优化首先采用基于圆的指南算法,以近似避免静态障碍的成本和梯度。然后,使用视觉检测的移动对象,我们的后水平距离场同时用于防止动态碰撞。最后,采用迭代重新指导策略来生成无碰撞轨迹。仿真和物理实验证明,我们的方法可以实时运行以安全地导航动态环境。
translated by 谷歌翻译
由于廉价的传感和边缘计算解决方案,最近在非结构化和未知环境中对机器人勘探的需求最近已经成长。为了更接近完全自主权,机器人需要实时处理测量流,呼吁有效的探索策略。基于信息的探测技术,例如Cauchy-Schwarz二次互信息(CSQMI)和快速Shannon互信(FSMI),已成功实现了具有范围测量的主动二进制占用映射。然而,正如我们设想使用语义有意义的对象指定的复杂任务的机器人,因此必须在测量,地图表示和探索目标中捕获语义类别。在这项工作中,我们提出了一种利用范围类别测量的贝叶斯多级映射算法,以及用于多级地图和测量的Shannon互联信息的封闭形式的下限。该界限允许快速评估许多潜在机器人轨迹,用于自主勘探和映射。此外,我们通过基于OctREE数据结构的语义标签,开发3-D环境的压缩表示,每个体素维护对象类的分类分布。所提出的3-D表示有助于使用范围类别观察光线的跑步长度编码(RLE)在语义Octomap和测量之间快速计算Shannon互信息。我们比较我们对基于前沿和FSMI探索的方法,并在各种模拟和现实世界实验中应用它。
translated by 谷歌翻译
在本文中,我们为全向机器人提供了一种积极的视觉血液。目标是生成允许这样的机器人同时定向机器人的控制命令并将未知环境映射到最大化的信息量和消耗尽可能低的信息。利用机器人的独立翻译和旋转控制,我们引入了一种用于活动V-SLAM的多层方法。顶层决定提供信息丰富的目标位置,并为它们产生高度信息的路径。第二个和第三层积极地重新计划并执行路径,利用连续更新的地图和本地特征信息。此外,我们介绍了两个实用程序配方,以解释视野和机器人位置的障碍物。通过严格的模拟,真正的机器人实验和与最先进的方法的比较,我们证明我们的方法通过较小的整体地图熵实现了类似的覆盖结果。这是可以获得的,同时保持横向距离比其他方法短至39%,而不增加车轮的总旋转量。代码和实现详细信息作为开源提供。
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
这项工作提出了一种体现的代理,可以以完全自主的方式将其语义分割网络调整到新的室内环境中。由于语义分割网络无法很好地推广到看不见的环境,因此代理会收集新环境的图像,然后将其用于自我监督的域适应性。我们将其作为一个有益的路径计划问题提出,并提出一种新的信息增益,该信息利用从语义模型中提取的不确定性来安全地收集相关数据。随着域的适应性的进展,这些不确定性会随着时间的推移而发生变化,并且我们系统的快速学习反馈驱使代理收集不同的数据。实验表明,与勘探目标相比,我们的方法更快地适应了新环境,最终性能更高,并且可以成功部署到物理机器人上的现实环境中。
translated by 谷歌翻译
从混乱中挑选特定对象是许多操纵任务的重要组成部分。部分观察结果通常要求机器人在尝试掌握之前收集场景的其他观点。本文提出了一个闭环的下一次最佳策划者,该计划者根据遮挡的对象零件驱动探索。通过不断从最新场景重建中预测抓地力,我们的政策可以在线决定最终确定执行或适应机器人的轨迹以进行进一步探索。我们表明,与常见的相机位置和处理固定基线失败的情况相比,我们的反应性方法会减少执行时间而不会丢失掌握成功率。视频和代码可在https://github.com/ethz-asl/active_grasp上找到。
translated by 谷歌翻译
自主场景的曝光和探索,尤其是在本地化或沟通有限的区域,对于在未知场景中寻找目标有用,仍然是计算机导航中的一个具有挑战性的问题。在这项工作中,我们提出了一种用于实时环境探索的新方法,其唯一的要求是一个视觉上相似的数据集,用于预训练,场景中足够的照明以及用于环境感应的机上前瞻性RGB摄像机。与现有方法相反,我们的方法只需要一个外观(图像)才能做出一个良好的战术决定,因此在非成长,恒定的时间内起作用。两个方向的预测以像素为特征,称为goto和lookat像素,包括我们方法的核心。这些像素通过以下方式编码建议的飞行指令:goto像素定义了代理应以一个距离单位移动的方向,而Lookat像素定义了相机应在下一步中指向的方向。这些飞行的指导像素经过优化,以揭示当前未开发的区域的最多数量。我们的方法提出了一种新型的基于深度学习的导航方法,能够解决此问题并在更复杂的设置中证明其能力,即计算能力有限。此外,我们提出了一种生成面向导航数据集的方法,从而可以使用RGB和深度图像对我们的方法有效培训。在模拟器中进行的测试,评估了稀疏像素的推断过程的协调,以及旨在揭示区域并降低目标距离的2D和3D测试飞行取得了令人鼓舞的结果。与最先进的算法的比较表明,我们的方法能够表现出色,在测量每个相机姿势的新体素,最小距离目标距离,所见表面素的百分比和计算时间指标。
translated by 谷歌翻译