最近,深度神经网络具有极大的高级无效磁共振图像(MRI)重建,其中大多数研究都遵循单个解剖学中的一个网络时尚,即每个专家网络都经过训练和评估特定解剖结构。除了培训多个独立模型的效率低下之外,此类公约还忽略了各种解剖学的共享脱张知识,这些知识可以彼此受益。为了探索共享知识,一种天真的方法是将来自各种解剖学的所有数据结合起来,以训练全能网络。不幸的是,尽管存在共同的脱氧知识,但我们透露,不同解剖学的独家知识可能会恶化特定的重建目标,从而导致整体绩效降低。在这项研究中观察到这一点,我们提出了一个新型的深MRI重建框架,并具有解剖结构和解剖学特异性的参数化学习者,旨在“寻求共同点,同时解决不同的解剖学差异”。尤其是主要的解剖学共享的学习者是暴露于不同的解剖学上,以模拟蓬勃发展的共同知识,而有效的解剖学特异性学习者则接受了目标解剖结构的培训,以进行独家知识。在两个MRI重建网络中,在我们的框架顶部介绍并探索了四个不同的解剖学学习者实现。关于大脑,膝盖和心脏MRI数据集的全面实验表明,其中三个学习者能够通过多种解剖学协作学习来增强重建性能。
translated by 谷歌翻译
磁共振(MR)图像重建来自高度缺点$ K $ -space数据在加速MR成像(MRI)技术中至关重要。近年来,基于深度学习的方法在这项任务中表现出很大的潜力。本文提出了一种学习的MR图像重建半二次分割算法,并在展开的深度学习网络架构中实现算法。我们比较我们提出的方法对针对DC-CNN和LPDNET的公共心先生数据集的性能,我们的方法在定量结果和定性结果中表现出其他方法,具有更少的模型参数和更快的重建速度。最后,我们扩大了我们的模型,实现了卓越的重建质量,并且改善为1.76美元$ 276 $ 274美元的LPDNET以5美元\倍率为5美元的峰值信噪比。我们的方法的代码在https://github.com/hellopipu/hqs-net上公开使用。
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译
由于组织和骨骼之间的相似性,在人解剖结构中广泛看到了全球相关性。由于近距离质子密度和T1/T2参数,这些相关性反映在磁共振成像(MRI)扫描中。此外,为了实现加速的MRI,k空间数据的采样不足,从而导致全球混叠伪像。卷积神经网络(CNN)模型被广泛用于加速MRI重建,但是由于卷积操作的固有位置,这些模型在捕获全球相关性方面受到限制。基于自发的变压器模型能够捕获图像特征之间的全局相关性,但是,变压器模型对MRI重建的当前贡献是微小的。现有的贡献主要提供CNN转换器混合解决方案,并且很少利用MRI的物理学。在本文中,我们提出了一种基于物理的独立(无卷积)变压器模型,标题为“多头级联SWIN变压器(MCSTRA),用于加速MRI重建。 MCSTRA将几种相互关联的MRI物理相关概念与变压器网络相结合:它通过移动的窗口自我发场机制利用了全局MR特征;它使用多头设置分别提取属于不同光谱组件的MR特征;它通过级联的网络在中间脱氧和K空间校正之间进行迭代,该网络具有K空间和中间损耗计算中的数据一致性;此外,我们提出了一种新型的位置嵌入生成机制,以使用对应于底面采样掩码的点扩散函数来指导自我发作。我们的模型在视觉上和定量上都大大优于最先进的MRI重建方法,同时描述了改善的分辨率和去除词法。
translated by 谷歌翻译
深度学习在加速磁共振成像(MRI)中表现出惊人的性能。最先进的深度学习重建采用强大的卷积神经网络,并且由于许多磁共振图像或其对应的k空间是2D的许多磁共振图像或其对应的k空间。在这项工作中,我们展示了一种探讨了1D卷积的新方法,使得深度网络更容易受到培训和广义。我们进一步将1D卷积集成到所提出的深网络中,命名为一维深度低级和稀疏网络(ODL),它展开了低级和稀疏重建模型的迭代过程。在体内膝盖和脑数据集中的广泛结果表明,所提出的ODLS非常适合培训受试者的情况,并提供比视觉和定量的最先进的方法改进的重建性能。此外,ODL还向不同的欠采样场景显示出良好的稳健性以及培训和测试数据之间的一些不匹配。总之,我们的工作表明,在快速MRI中,1D深度学习方案是内存高效且强大的。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
减少磁共振(MR)图像采集时间可能会使MR检查更容易获得。包括深度学习模型在内的先前艺术已致力于解决长期MRI成像时间的问题。最近,深层生成模型在算法鲁棒性和使用灵活性方面具有巨大的潜力。然而,无法直接学习或使用任何现有方案。此外,还值得研究的是,深层生成模型如何在混合域上很好地工作。在这项工作中,通过利用基于深度能量的模型,我们提出了一个K空间和图像域协作生成模型,以全面估算从采样量未采样的测量中的MR数据。与最先进的实验比较表明,所提出的混合方法的重建精度较小,在不同的加速因子下更稳定。
translated by 谷歌翻译
我们提出了明确结合频率和图像特征表示的神经网络层,并表明它们可以用作频率空间数据重建的多功能构建块。我们的工作是由MRI习得引起的挑战所激发的,该挑战是信号是所需图像的傅立叶变换。提出的联合学习方案既可以校正频率空间的天然伪像,又可以操纵图像空间表示,以重建网络各层的相干图像结构。这与图像重建的大多数当前深度学习方法形成鲜明对比,该方法分别处理频率和图像空间特征,并且通常在两个空间之一中仅运行。我们证明了联合卷积学习在各种任务中的优势,包括运动校正,denosing,从不足采样的采集中重建,以及对模拟和现实世界多层MRI数据的混合采样和运动校正。联合模型在所有任务和数据集中都始终如一地产生高质量的输出图像。当整合到具有物理启发的数据一致性约束的最终采样重建的情况下,将其集成到艺术风化的优化网络中时,提议的体系结构显着改善了优化景观,从而产生了减少训练时间的数量级。该结果表明,联合表示特别适合深度学习网络中的MRI信号。我们的代码和预算模型可在https://github.com/nalinimsingh/interlacer上公开获得。
translated by 谷歌翻译
在临床医学中,磁共振成像(MRI)是诊断,分类,预后和治疗计划中最重要的工具之一。然而,MRI遭受了固有的慢数据采集过程,因为数据在k空间中顺序收集。近年来,大多数MRI重建方法在文献中侧重于整体图像重建而不是增强边缘信息。这项工作通过详细说明了对边缘信息的提高来阐述了这一趋势。具体地,我们通过结合多视图信息介绍一种用于快速多通道MRI重建的新型并行成像耦合双鉴别器生成的对抗网络(PIDD-GaN)。双判别设计旨在改善MRI重建中的边缘信息。一个鉴别器用于整体图像重建,而另一个鉴别器是负责增强边缘信息的负责。为发电机提出了一种具有本地和全局剩余学习的改进的U-Net。频率通道注意块(FCA块)嵌入在发电机中以结合注意力机制。引入内容损耗以培训发电机以获得更好的重建质量。我们对Calgary-Campinas公共大脑MR DataSet进行了全面的实验,并将我们的方法与最先进的MRI重建方法进行了比较。在MICCAI13数据集上进行了对剩余学习的消融研究,以验证所提出的模块。结果表明,我们的PIDD-GaN提供高质量的重建MR图像,具有良好的边缘信息。单图像重建的时间低于5ms,符合加快处理的需求。
translated by 谷歌翻译
最近,对深度学习进行了广泛的研究,以加速动态磁共振(MR)成像,并取得了令人鼓舞的进步。但是,如果没有完全采样的参考数据进行培训,当前方法可能在恢复细节或结构方面具有有限的能力。为了应对这一挑战,本文提出了一个自我监督的协作学习框架(SelfCollearn),以从无效的K-Space数据中进行准确的动态MR图像重建。拟议的框架配备了三个重要组成部分,即双网络协作学习,重新启动数据增强和专门设计的共同培训损失。该框架可以灵活地与数据驱动的网络和基于模型的迭代未滚动网络集成。我们的方法已在体内数据集上进行了评估,并将其与四种最新方法进行了比较。结果表明,我们的方法具有很强的能力,可以从无效的K空间数据捕获直接重建的基本和固有表示形式,因此可以实现高质量且快速的动态MR成像。
translated by 谷歌翻译
将优化算法映射到神经网络中,深度展开的网络(DUNS)在压缩传感(CS)方面取得了令人印象深刻的成功。从优化的角度来看,Duns从迭代步骤中继承了一个明确且可解释的结构。但是,从神经网络设计的角度来看,大多数现有的Dun是基于传统图像域展开而固有地建立的,该图像域的展开将一通道图像作为相邻阶段之间的输入和输出,从而导致信息传输能力不足,并且不可避免地会损失图像。细节。在本文中,为了打破上述瓶颈,我们首先提出了一个广义的双域优化框架,该框架是逆成像的一般性,并将(1)图像域和(2)卷积编码域先验的优点整合到限制解决方案空间中的可行区域。通过将所提出的框架展开到深神经网络中,我们进一步设计了一种新型的双域深卷积编码网络(D3C2-NET),用于CS成像,具有通过所有展开的阶段传输高通量特征级图像表示的能力。关于自然图像和MR图像的实验表明,与其他最先进的艺术相比,我们的D3C2-NET实现更高的性能和更好的准确性权衡权衡。
translated by 谷歌翻译
联合学习(FL)可用于通过使多个机构协作,改善磁共振(MR)图像重建的数据隐私和效率,而无需聚合本地数据。然而,由不同MR成像协议引起的域移位可以显着降低FL模型的性能。最近的流程倾向于通过增强全局模型的概括来解决这一点,但它们忽略了特定于域的特征,这可能包含有关设备属性的重要信息,并且对本地重建有用。在本文中,我们提出了一种针对MR图像重建(FEDMRI)的特异性保存流算法。核心思想是将MR重建模型划分为两个部分:全局共享编码器,以在全局级别获取概括的表示,以及客户特定的解码器,以保留每个客户端的特定于域的属性,这对于协作很重要当客户具有独特的分发时重建。此外,为了进一步提高全局共享编码器的收敛,当存在域移位时,引入加权对比正规化以在优化期间直接校正客户端和服务器之间的任何偏差。广泛的实验表明,我们的Fedmri的重建结果是最接近多机构数据的地面真理,并且它优于最先进的FL方法。
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
压缩传感(CS)一直在加速磁共振成像(MRI)采集过程中的关键作用。随着人工智能的复苏,深神经网络和CS算法正在集成以重新定义快速MRI的领域。过去几年目睹了基于深度学习的CS技术的复杂性,多样性和表现的大量增长,这些技术致力于快速MRI。在该荟萃分析中,我们系统地审查了快速MRI的深度学习的CS技术,描述了关键模型设计,突出突破,并讨论了有希望的方向。我们还介绍了一个综合分析框架和分类系统,以评估深度学习在基于CS的加速度的MRI的关键作用。
translated by 谷歌翻译
具有高分辨率(HR)的磁共振成像(MRI)提供了更详细的信息,以进行准确的诊断和定量图像分析。尽管取得了重大进展,但大多数现有的医学图像重建网络都有两个缺陷:1)所有这些缺陷都是在黑盒原理中设计的,因此缺乏足够的解释性并进一步限制其实际应用。可解释的神经网络模型引起了重大兴趣,因为它们在处理医学图像时增强了临床实践所需的可信赖性。 2)大多数现有的SR重建方法仅使用单个对比度或使用简单的多对比度融合机制,从而忽略了对SR改进至关重要的不同对比度之间的复杂关系。为了解决这些问题,在本文中,提出了一种新颖的模型引导的可解释的深层展开网络(MGDUN),用于医学图像SR重建。模型引导的图像SR重建方法求解手动设计的目标函数以重建HR MRI。我们通过将MRI观察矩阵和显式多对比度关系矩阵考虑到末端到端优化期间,将迭代的MGDUN算法展示为新型模型引导的深层展开网络。多对比度IXI数据集和Brats 2019数据集进行了广泛的实验,证明了我们提出的模型的优势。
translated by 谷歌翻译
多对比度MRI(MC-MRI)捕获了多种互补成像方式,以帮助放射决策。鉴于需要降低多次收购的时间成本,当前的深度加速MRI重建网络集中于利用多个对比度之间的冗余。但是,现有的作品在很大程度上受到了配对数据和/或过度昂贵的完全采样的MRI序列的监督。此外,重建网络通常依赖于卷积体系结构,这些卷积体系结构在建模远程相互作用的能力上受到限制,并可能导致良好的解剖学细节的次优恢复。对于这些目的,我们提出了一个双域自我监督的变压器(DSFORMER),用于加速MC-MRI重建。 DSFormer开发了一个深层条件级联变压器(DCCT),该变压器由几个级联的Swin Transformer重建网络(SWINRN)组成,该网络(SWINRN)在两种深层调理策略下训练,以实现MC-MRI信息共享。我们进一步提出了DCCT的双域(图像和K空间)自我监督的学习策略,以减轻获取完全采样的培训数据的成本。 DSFormer会生成高保真重建,从而超过电流完全监督的基线。此外,我们发现,通过全面监督或我们提出的双域自学训练,DSFORMER可以实现几乎相同的性能。
translated by 谷歌翻译
在计算断层摄影(CT)成像过程中,患者内的金属植入物总是造成有害伪影,这对重建的CT图像的视觉质量产生了负面影响,并且对随后的临床诊断产生负面影响。对于金属伪影减少(MAR)任务,基于深度学习的方法取得了有希望的表现。然而,大多数主要共享两个主要常见限制:1)CT物理成像几何约束是完全融入深网络结构中的; 2)整个框架对特定MAR任务具有薄弱的可解释性;因此,难以评估每个网络模块的作用。为了减轻这些问题,在本文中,我们构建了一种新的可解释的双域网络,称为Indudonet +,CT成像过程被精细地嵌入到其中。具体地说,我们推出了一个联合空间和氡域重建模型,并提出了一种仅具有简单操作员的优化算法来解决它。通过将所提出的算法中涉及的迭代步骤展开到相应的网络模块中,我们可以轻松地构建Indudonet +,以明确的解释性。此外,我们分析了不同组织之间的CT值,并将现有的观察合并到Endudonet +的现有网络中,这显着提高了其泛化性能。综合数据和临床数据的综合实验证实了所提出的方法的优越性以及超出当前最先进(SOTA)MAR方法的卓越概括性性能。代码可用于\ url {https://github.com/hongwang01/indududonet_plus}。
translated by 谷歌翻译
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In MRI, restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3D HR image acquisition typically requests long scan time and, results in small spatial coverage and low SNR. Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR-LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
translated by 谷歌翻译
基于卷积神经网络的MR重建方法已经显示出提供快速和高质量的重建。具有基于CNN的模型的主要缺点是它缺乏灵活性,并且可以仅针对特定采集上下文限制实际适用性有效运行。通过获取上下文,我们的意思是三个输入设置的特定组合,即所认为的三种输入,在研究中的解剖学,欠采样掩模图案和欠采样的加速度。该模型可以在组合多个上下文的图像上共同培训。然而,该模型不符合上下文特定模型的性能,也不符合在火车时间内看不见的上下文。这需要在生成上下文特定权重时修改现有体系结构,以便将灵活性合并到多个上下文。我们提出了一个多次采集的上下文基础网络,称为MAC-Recordnet,用于MRI重建,灵活地到多个获取上下文,并更广泛地概括为在实际方案中适用性的未操作性上下文。所提出的网络具有MRI重建模块和动态重量预测(DWP)模块。 DWP模块将相应的获取上下文信息作为输入,并学习重建模块的上下文专用权重,在运行时使用上下文动态变化。我们表明,所提出的方法可以根据心脏和大脑数据集,高斯和笛卡尔欠采样模式和五个加速因子处理多个上下文。所提出的网络优于Naive联合训练的模型,并通过定量和定性地具有与上下文专用模型具有竞争力的结果。我们还通过在火车时间看不见的背景下测试了我们模型的普遍性。
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译