近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
我们介绍了一种牛顿型方法,可以从任何初始化和带有Lipschitz Hessians的任意凸面目标收敛。通过将立方规范化与某种自适应levenberg - Marquardt罚款合并来实现这一目标。特别地,我们表明由$ x ^ {k + 1} = x ^ k - \ bigl(\ nabla ^ 2 f(x ^ k)+ \ sqrt {h \ | \ nabla f(x ^ k)给出的迭代)\ |} \ mathbf {i} \ bigr)^ { - 1} \ nabla f(x ^ k)$,其中$ h> 0 $是一个常数,用$ \ mathcal {o}全球收敛(\ frac{1} {k ^ 2})$率。我们的方法是牛顿方法的第一个变体,具有廉价迭代和可怕的全球融合。此外,我们证明当目的强烈凸起时,本地我们的方法会收敛超连续。为了提高方法的性能,我们提供了一种不需要超参数的线路搜索程序,并且可提供高效。
translated by 谷歌翻译
在本文中,我们研究并证明了拟牛顿算法的Broyden阶级的非渐近超线性收敛速率,包括Davidon - Fletcher - Powell(DFP)方法和泡沫 - 弗莱彻 - 夏诺(BFGS)方法。这些准牛顿方法的渐近超线性收敛率在文献中已经广泛研究,但它们明确的有限时间局部会聚率未得到充分调查。在本文中,我们为Broyden Quasi-Newton算法提供了有限时间(非渐近的)收敛分析,在目标函数强烈凸起的假设下,其梯度是Lipschitz连续的,并且其Hessian在最佳解决方案中连续连续。我们表明,在最佳解决方案的本地附近,DFP和BFGS生成的迭代以$(1 / k)^ {k / 2} $的超连线率收敛到最佳解决方案,其中$ k $是迭代次数。我们还证明了类似的本地超连线收敛结果,因为目标函数是自我协调的情况。几个数据集的数值实验证实了我们显式的收敛速度界限。我们的理论保证是第一个为准牛顿方法提供非渐近超线性收敛速率的效果之一。
translated by 谷歌翻译
本文研究了拟牛顿方法求解强凸强凹鞍点问题(SPP)。我们提出了SPP一般贪婪Broyden族更新,其中有$明确的局部超线性收敛速度的变体{\mathcalØ}\大(\大(1\压裂{1}{N\卡帕^2}\大)^ {K(K-1)/ 2}\大)$,其中$N $是问题的尺寸,$ \卡帕$是条件数和$$ķ是迭代次数。设计和算法的分析是基于估计不定Hessian矩阵的平方,这是从在凸优化古典准牛顿方法的不同。我们还提出两个具体Broyden族算法与BFGS型和SR1型更新,其享受的$更快的局部收敛速度\mathcalØ\大(\大(1\压裂{1} {N}\大)^{K(K-1)/ 2}\大)$。
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
现代统计应用常常涉及最小化可能是非流动和/或非凸起的目标函数。本文侧重于广泛的Bregman-替代算法框架,包括本地线性近似,镜像下降,迭代阈值,DC编程以及许多其他实例。通过广义BREGMAN功能的重新发出使我们能够构建合适的误差测量并在可能高维度下建立非凸起和非凸起和非球形目标的全球收敛速率。对于稀疏的学习问题,在一些规律性条件下,所获得的估算器作为代理人的固定点,尽管不一定是局部最小化者,但享受可明确的统计保障,并且可以证明迭代顺序在所需的情况下接近统计事实准确地快速。本文还研究了如何通过仔细控制步骤和放松参数来设计基于适应性的动力的加速度而不假设凸性或平滑度。
translated by 谷歌翻译
最近有兴趣的兴趣在教师学生环境中的各种普遍性线性估计问题中的渐近重建性能研究,特别是对于I.I.D标准正常矩阵的案例。在这里,我们超越这些矩阵,并证明了具有具有任意界限频谱的旋转不变数据矩阵的凸遍的线性模型的重建性能的分析公式,严格地确认使用来自统计物理的副本衍生的猜想。该公式包括许多问题,例如压缩感测或稀疏物流分类。通过利用消息通过算法和迭代的统计特性来实现证明,允许表征估计器的渐近实证分布。我们的证据是基于构建Oracle多层向量近似消息传递算法的会聚序列的构建,其中通过检查等效动态系统的稳定性来完成收敛分析。我们说明了我们对主流学习方法的数值示例的要求,例如稀疏的逻辑回归和线性支持矢量分类器,显示中等大小模拟和渐近预测之间的良好一致性。
translated by 谷歌翻译
对于函数的矩阵或凸起的正半明确度(PSD)的形状约束在机器学习和科学的许多应用中起着核心作用,包括公制学习,最佳运输和经济学。然而,存在很少的功能模型,以良好的经验性能和理论担保来强制执行PSD-NESS或凸起。在本文中,我们介绍了用于在PSD锥中的值的函数的内核平方模型,其扩展了最近建议编码非负标量函数的内核平方型号。我们为这类PSD函数提供了一个代表性定理,表明它构成了PSD函数的普遍近似器,并在限定的平等约束的情况下导出特征值界限。然后,我们将结果应用于建模凸起函数,通过执行其Hessian的核心量子表示,并表明可以因此表示任何平滑且强凸的功能。最后,我们说明了我们在PSD矩阵值回归任务中的方法以及标准值凸起回归。
translated by 谷歌翻译
我们提出了一种基于优化的基于优化的框架,用于计算差异私有M估算器以及构建差分私立置信区的新方法。首先,我们表明稳健的统计数据可以与嘈杂的梯度下降或嘈杂的牛顿方法结合使用,以便分别获得具有全局线性或二次收敛的最佳私人估算。我们在局部强大的凸起和自我协调下建立当地和全球融合保障,表明我们的私人估算变为对非私人M估计的几乎最佳附近的高概率。其次,我们通过构建我们私有M估计的渐近方差的差异私有估算来解决参数化推断的问题。这自然导致近​​似枢轴统计,用于构建置信区并进行假设检测。我们展示了偏置校正的有效性,以提高模拟中的小样本实证性能。我们说明了我们在若干数值例子中的方法的好处。
translated by 谷歌翻译
最近的一些实证研究表明,重要的机器学习任务,例如训练深神网络,表现出低级别的结构,其中损耗函数仅在输入空间的几个方向上差异很大。在本文中,我们利用这种低级结构来降低基于规范梯度的方法(例如梯度下降(GD))的高计算成本。我们提出的\ emph {低率梯度下降}(lrgd)算法找到了$ \ epsilon $ - approximate的固定点$ p $ - 维功能,首先要识别$ r \ r \ leq p $重要的方向,然后估算真实的方向每次迭代的$ p $维梯度仅通过计算$ r $方向来计算定向衍生物。我们确定强烈凸和非convex目标函数的LRGD的“定向甲骨文复杂性”是$ \ Mathcal {o}(r \ log(1/\ epsilon) + rp) + rp)$ and $ \ Mathcal {o}(R /\ epsilon^2 + rp)$。当$ r \ ll p $时,这些复杂性小于$ \ mathcal {o}的已知复杂性(p \ log(1/\ epsilon))$和$ \ mathcal {o}(p/\ epsilon^2) {\ gd}的$分别在强凸和非凸口设置中。因此,LRGD显着降低了基于梯度的方法的计算成本,以实现足够低级别的功能。在分析过程中,我们还正式定义和表征精确且近似级别函数的类别。
translated by 谷歌翻译
我们研究无限制的黎曼优化的免投影方法。特别是,我们提出了黎曼弗兰克 - 沃尔夫(RFW)方法。我们将RFW的非渐近收敛率分析为最佳(高音)凸起问题,以及非凸起目标的临界点。我们还提出了一种实用的设置,其中RFW可以获得线性收敛速度。作为一个具体的例子,我们将RFW专用于正定矩阵的歧管,并将其应用于两个任务:(i)计算矩阵几何平均值(riemannian质心); (ii)计算Bures-Wasserstein重心。这两个任务都涉及大量凸间间隔约束,为此,我们表明RFW要求的Riemannian“线性”Oracle承认了闭合形式的解决方案;该结果可能是独立的兴趣。我们进一步专门从事RFW到特殊正交组,并表明这里也可以以封闭形式解决riemannian“线性”甲骨文。在这里,我们描述了数据矩阵同步的应用程序(促使问题)。我们补充了我们的理论结果,并对RFW对最先进的riemananian优化方法进行了实证比较,并观察到RFW竞争性地对计算黎曼心质的任务进行竞争性。
translated by 谷歌翻译
策略梯度方法适用于复杂的,不理解的,通过对参数化的策略进行随机梯度下降来控制问题。不幸的是,即使对于可以通过标准动态编程技术解决的简单控制问题,策略梯度算法也会面临非凸优化问题,并且被广泛理解为仅收敛到固定点。这项工作确定了结构属性 - 通过几个经典控制问题共享 - 确保策略梯度目标函数尽管是非凸面,但没有次优的固定点。当这些条件得到加强时,该目标满足了产生收敛速率的Polyak-lojasiewicz(梯度优势)条件。当其中一些条件放松时,我们还可以在任何固定点的最佳差距上提供界限。
translated by 谷歌翻译
鉴于Vanilla SGD的直接简单,本文在迷你批处理箱中提供了精细调整其阶梯尺寸。为了这样做,基于局部二次模型并仅使用嘈杂的梯度近似来估计曲率。一个人获得一种新的随机第一阶方法(步骤调谐的SGD),由二阶信息增强,这可以被视为古典Barzilai-Borwein方法的随机版本。我们的理论结果确保了几乎肯定的趋同集,我们提供了收敛速率。深度剩余网络培训的实验说明了我们方法的有利性质。对于我们在培训期间观察到的网络,突然下降的损失和中等阶段的测试精度的提高,产生比SGD,RMSPROP或ADAM更好的结果。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
对于光滑的强凸目标,梯度下降的经典理论可确保相对于梯度评估的数量的线性收敛。一个类似的非球形理论是具有挑战性的:即使目标在每一次迭代的目标流畅时,相应的本地模型也是不稳定的,传统的补救措施需要不可预测的许多切割平面。我们提出了对局部优化的梯度下降迭代的多点概括。虽然设计了一般目标,但我们受到“最大平滑”模型的动机,可在最佳状态下捕获子样本维度。当目标本身自象最大的情况时,我们证明了线性融合,并且实验表明了更普遍的现象。
translated by 谷歌翻译
在本文中,我们提出了一个算法框架,称为乘数的惯性交替方向方法(IADMM),用于求解与线性约束线性约束的一类非convex非conmooth多块复合优化问题。我们的框架采用了一般最小化 - 更大化(MM)原理来更新每个变量块,从而不仅统一了先前在MM步骤中使用特定替代功能的AMDM的收敛分析,还导致新的有效ADMM方案。据我们所知,在非convex非平滑设置中,ADMM与MM原理结合使用,以更新每个变量块,而ADMM与\ emph {Primal变量的惯性术语结合在一起}尚未在文献中研究。在标准假设下,我们证明了生成的迭代序列的后续收敛和全局收敛性。我们说明了IADMM对一类非凸低级别表示问题的有效性。
translated by 谷歌翻译
在深度学习中的优化分析是连续的,专注于(变体)梯度流动,或离散,直接处理(变体)梯度下降。梯度流程可符合理论分析,但是风格化并忽略计算效率。它代表梯度下降的程度是深度学习理论的一个开放问题。目前的论文研究了这个问题。将梯度下降视为梯度流量初始值问题的近似数值问题,发现近似程度取决于梯度流动轨迹周围的曲率。然后,我们表明,在具有均匀激活的深度神经网络中,梯度流动轨迹享有有利的曲率,表明它们通过梯度下降近似地近似。该发现允许我们将深度线性神经网络的梯度流分析转换为保证梯度下降,其几乎肯定会在随机初始化下有效地收敛到全局最小值。实验表明,在简单的深度神经网络中,具有传统步长的梯度下降确实接近梯度流。我们假设梯度流动理论将解开深入学习背后的奥秘。
translated by 谷歌翻译
用于解决无约束光滑游戏的两个最突出的算法是经典随机梯度下降 - 上升(SGDA)和最近引入的随机共识优化(SCO)[Mescheder等,2017]。已知SGDA可以收敛到特定类别的游戏的静止点,但是当前的收敛分析需要有界方差假设。 SCO用于解决大规模对抗问题,但其收敛保证仅限于其确定性变体。在这项工作中,我们介绍了预期的共同胁迫条件,解释了它的好处,并在这种情况下提供了SGDA和SCO的第一次迭代收敛保证,以解决可能是非单调的一类随机变分不等式问题。我们将两种方法的线性会聚到解决方案的邻域时,当它们使用恒定的步长时,我们提出了富有识别的步骤化切换规则,以保证对确切解决方案的融合。此外,我们的收敛保证在任意抽样范式下担保,因此,我们对迷你匹配的复杂性进行了解。
translated by 谷歌翻译
我们研究了二阶算法混合牛顿方法和惯性梯度下降的渐近行为在非凸景观中。我们表明,尽管牛顿行为这些方法,但它们几乎总是逃脱严格的马鞍点。我们还证明了这些方法的超级参数在其定性行为附近关键点的定性行为发挥作用。理论结果由数字插图支持。
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译