视频内容不仅是人类观看的,而且越来越多地被机器观看。例如,机器学习模型分析监视视频,以进行安全性和流量监控,通过YouTube视频搜索不适当的内容,等等。在本文中,我们提出了一个可扩展的视频编码框架,该框架通过其基础层bitstream和人类视觉通过其增强层的bitstream来支持机器视觉(特别是对象检测)。所提出的框架包括基于常规神经网络(DNN)的视频编码的组件。结果表明,与最先进的视频编解码器相比,在对象检测中,提议的框架可节省13-19%的位,同时在人类视觉任务上保持竞争力。
translated by 谷歌翻译
当涉及数码相机中的图像压缩时,传统上是在压缩之前执行的。但是,在某些应用中,可能需要进行图像噪声来证明图像的可信度,例如法院证据和图像取证。这意味着除干净的图像本身外,还需要编码噪声本身。在本文中,我们提出了一个基于学习的图像压缩框架,在该框架中共同执行图像denoising和压缩。图像编解码器的潜在空间以可扩展的方式组织,以便可以从潜在空间的子集(基础层)中解码清洁图像,而嘈杂的图像则以较高的速率从完整的潜在空间解码。使用潜在空间的子集作为剥落图像,可以以较低的速率进行deno。除了提供嘈杂的输入图像的可扩展表示外,用压缩共同执行deno,这是直观的意义,因为噪声很难压缩;因此,可压缩性是可能有助于区分信号的标准之一。将提出的编解码器与已建立的压缩和降解基准进行了比较,并且与最先进的编解码器和最先进的Denoiser的级联组合相比,实验显示了大量的比特率节省。
translated by 谷歌翻译
传统的视频压缩(VC)方法基于运动补偿变换编码,并且由于端到端优化问题的组合性质,运动估计,模式和量化参数选择的步骤和熵编码是单独优化的。学习VC允许同时对端到端速率失真(R-D)优化非线性变换,运动和熵模型的优化训练。大多数工作都在学习VC基于R-D损耗对连续帧的对考虑连续视频编解码器的端到端优化。它在传统的VC中众所周知的是,双向编码优于顺序压缩,因为它能够使用过去和未来的参考帧。本文提出了一种学习的分层双向视频编解码器(LHBDC),其结合了分层运动补偿预测和端到端优化的益处。实验结果表明,我们达到了迄今为​​止在PSNR和MS-SSIM中的学习VC方案报告的最佳R-D结果。与传统的视频编解码器相比,我们的端到端优化编解码器的RD性能优于PSNR和MS-SSIM中的X265和SVT-HEVC编码器(“非常流”预设)以及MS-中的HM 16.23参考软件。 SSIM。我们提出了由于所提出的新颖工具,例如学习屏蔽,流场附带和时间流量矢量预测等新颖工具,展示了表现出性能提升。重现我们结果的模型和说明可以在https://github.com/makinyilmaz/lhbdc/中找到
translated by 谷歌翻译
这项工作介绍了称为B-CANF的B帧编码框架,该框架利用有条件的增强标准化流量来进行B框架编码。学到的B框架编码的探索较少,更具挑战性。B-CANF是由有条件的P框架编码的最新进展的动机,是将基于流的模型应用于条件运动和框架间编码的首次尝试。B-CANF功能帧型自适应编码,该编码可以学习层次B框架编码更好的位分配。B-Canf还引入了一种特殊类型的B帧,称为B*-Frame,以模拟P框架编码。在常用数据集上,B-CANF达到了最新的压缩性能,在随机访问配置下显示了与HM-16.23相当的BD速率结果(在PSNR-RGB方面)。
translated by 谷歌翻译
Conventional video compression approaches use the predictive coding architecture and encode the corresponding motion information and residual information. In this paper, taking advantage of both classical architecture in the conventional video compression method and the powerful nonlinear representation ability of neural networks, we propose the first end-to-end video compression deep model that jointly optimizes all the components for video compression. Specifically, learning based optical flow estimation is utilized to obtain the motion information and reconstruct the current frames. Then we employ two auto-encoder style neural networks to compress the corresponding motion and residual information. All the modules are jointly learned through a single loss function, in which they collaborate with each other by considering the trade-off between reducing the number of compression bits and improving quality of the decoded video. Experimental results show that the proposed approach can outperform the widely used video coding standard H.264 in terms of PSNR and be even on par with the latest standard H.265 in terms of MS-SSIM. Code is released at https://github.com/GuoLusjtu/DVC. * Corresponding author (a) Original frame (Bpp/MS-SSIM) (b) H.264 (0.0540Bpp/0.945) (c) H.265 (0.082Bpp/0.960) (d) Ours ( 0.0529Bpp/ 0.961
translated by 谷歌翻译
视频编码技术已不断改进,以更高的分辨率以更高的压缩比。但是,最先进的视频编码标准(例如H.265/HEVC和多功能视频编码)仍在设计中,该假设将被人类观看。随着深度神经网络在解决计算机视觉任务方面的巨大进步和成熟,越来越多的视频通过无人参与的深度神经网络直接分析。当计算机视觉应用程序使用压缩视频时,这种传统的视频编码标准设计并不是最佳的。尽管人类视觉系统对具有高对比度的内容一直敏感,但像素对计算机视觉算法的影响是由特定的计算机视觉任务驱动的。在本文中,我们探索并总结了计算机视觉任务的视频编码和新兴视频编码标准,机器的视频编码。
translated by 谷歌翻译
神经图像编码现在表示现有的图像压缩方法。但是,在视频域中仍有很多工作。在这项工作中,我们提出了一部结束了学习的视频编解码器,介绍了几个建筑Noveltize以及培训Noveltizes,围绕适应和关注的概念。我们的编解码器被组织为与帧间编解码器配对的帧内编解码器。作为一种建筑新颖,我们建议培训帧间编解码器模型以基于输入视频的分辨率来调整运动估计处理。第二个建筑新奇是一种新的神经块,它将基于分裂的神经网络和Densenets的概念结合了。最后,我们建议在推理时间内过度装备一组解码器侧乘法参数。通过消融研究和对现有技术的比较,我们在编码收益方面表现出我们所提出的技术的好处。我们将编解码器与VVC / H.266和RLVC进行比较,该rlvc分别代表最先进的传统和端到端学习的编解码器,并在2021年在2021年在2021年执行端到端学习方法竞争,e2e_t_ol。我们的编解码器显然优于E2E_T_OL,并在某些设置中对VVC和RLVC有利地进行比较。
translated by 谷歌翻译
学习的视频压缩最近成为开发高级视频压缩技术的重要研究主题,其中运动补偿被认为是最具挑战性的问题之一。在本文中,我们通过异质变形补偿策略(HDCVC)提出了一个学识渊博的视频压缩框架,以解决由单尺度可变形的特征域中单尺可变形核引起的不稳定压缩性能的问题。更具体地说,所提出的算法提取物从两个相邻框架中提取的算法提取物特征来估算估计内容自适应的异质变形(Hetdeform)内核偏移量,而不是利用光流或单尺内核变形对齐。然后,我们将参考特征转换为HetDeform卷积以完成运动补偿。此外,我们设计了一个空间 - 邻化的分裂归一化(SNCDN),以实现更有效的数据高斯化结合了广义分裂的归一化。此外,我们提出了一个多框架增强的重建模块,用于利用上下文和时间信息以提高质量。实验结果表明,HDCVC比最近最新学习的视频压缩方法取得了优越的性能。
translated by 谷歌翻译
Block based motion estimation is integral to inter prediction processes performed in hybrid video codecs. Prevalent block matching based methods that are used to compute block motion vectors (MVs) rely on computationally intensive search procedures. They also suffer from the aperture problem, which can worsen as the block size is reduced. Moreover, the block matching criteria used in typical codecs do not account for the resulting levels of perceptual quality of the motion compensated pictures that are created upon decoding. Towards achieving the elusive goal of perceptually optimized motion estimation, we propose a search-free block motion estimation framework using a multi-stage convolutional neural network, which is able to conduct motion estimation on multiple block sizes simultaneously, using a triplet of frames as input. This composite block translation network (CBT-Net) is trained in a self-supervised manner on a large database that we created from publicly available uncompressed video content. We deploy the multi-scale structural similarity (MS-SSIM) loss function to optimize the perceptual quality of the motion compensated predicted frames. Our experimental results highlight the computational efficiency of our proposed model relative to conventional block matching based motion estimation algorithms, for comparable prediction errors. Further, when used to perform inter prediction in AV1, the MV predictions of the perceptually optimized model result in average Bjontegaard-delta rate (BD-rate) improvements of -1.70% and -1.52% with respect to the MS-SSIM and Video Multi-Method Assessment Fusion (VMAF) quality metrics, respectively as compared to the block matching based motion estimation system employed in the SVT-AV1 encoder.
translated by 谷歌翻译
近年来,出于计算机视觉目的,将图像传输到远程服务器的传输急剧增加。在许多应用程序(例如监视)中,图像主要是用于自动分析的,并且很少被人类看到。在这种情况下,使用传统的压缩在比特率方面效率低下,这可能是由于关注基于人类的失真指标。因此,重要的是创建特定的图像编码方法,以供人类和机器联合使用。创建这种编解码器的机器侧的一种方法是在深神经网络中执行某些中间层执行机器任务的功能匹配。在这项工作中,我们探讨了用于培训人类和机器可学习的编解码器时所使用的层选择的效果。我们证明,使用数据处理不平等,从速率延伸的意义上讲,更深层的匹配特征是可取的。接下来,我们通过重新培训现有的可扩展人机编码模型来从经验上确认我们的发现。在我们的实验中,我们显示了这种可扩展模型的人类和机器方面的权衡,并讨论了在这方面使用更深层进行训练的好处。
translated by 谷歌翻译
随着事物(AIOT)的发展,在我们的日常工作和生活中产生了大量的视觉数据,例如图像和视频。这些视觉数据不仅用于人类观察或理解,而且用于机器分析或决策,例如智能监控,自动化车辆和许多其他智能城市应用。为此,在这项工作中提出了一种用于人机和机器使用的新图像编解码器范例。首先,利用神经网络提取高级实例分割图和低级信号特征。然后,实例分割图还被表示为具有所提出的16位灰度表示的简档。之后,两个16位灰度曲线和信号特征都以无损编解码器编码。同时,设计和培训图像预测器以实现具有16位灰度曲线简曲和信号特征的一般质量图像重建。最后,使用用于高质量图像重建的有损编解码器来压缩原始图像和预测的剩余地图。通过这种设计,一方面,我们可以实现可扩展的图像压缩,以满足不同人类消费的要求;另一方面,我们可以通过解码的16位灰度分布配置,例如对象分类,检测和分割,直接在解码器侧直接实现多个机器视觉任务。实验结果表明,该建议的编解码器在PSNR和MS-SSIM方面实现了基于大多数基于学习的编解码器,并且优于传统编解码器(例如,BPG和JPEG2000)以进行图像重建。同时,它在对象检测和分割的映射方面优于现有的编解码器。
translated by 谷歌翻译
最近,学习的视频压缩引起了很多关注,并显示出令人鼓舞的结果的快速发展趋势。但是,先前的作品仍然存在一些批评问题,并且在广泛使用的PSNR度量方面,具有传统压缩标准的性​​能差距。在本文中,我们提出了几种技术来有效提高性能。首先,为了解决累积错误的问题,我们将有条件的I框架作为GOP中的第一帧,该框架稳定了重建的质量并节省了比特率。其次,为了有效地提高相互预测的准确性而不增加解码器的复杂性,我们提出了一种像素到功能的运动预测方法,可以帮助我们获得高质量的运动信息。第三,我们提出了一种基于概率的熵跳过方法,该方法不仅带来了性能增长,而且大大降低了熵编码的运行时。借助这些强大的技术,本文提出了Alphavc,这是一种高性能且高效的学习视频压缩方案。据我们所知,Alphavc是第一个E2E AI编解码器,它超过了PSNR的所有常见测试数据集上最新的压缩标准VVC(-28.2%BD率节省)和MSSSSIM(-52.2%BD-rate节省),并且具有非常快速的编码(0.001x VVC)和解码(1.69x VVC)速度。
translated by 谷歌翻译
我们地址结束学习视频压缩,特别关注更好地学习和利用时间上下文。对于时间上下文挖掘,我们建议不仅存储先前重建的帧,还可以存储到广义解码图像缓冲器中的传播功能。从存储的传播功能中,我们建议学习多尺度的时间上下文,并将学习的时间上下文重新填充到压缩方案的模块中,包括上下文编码器 - 解码器,帧生成器和时间上下文编码器。我们的计划丢弃了并行化 - 不友好的自动回归熵模型,以追求更实用的解码时间。我们将我们的计划与X264和X265(分别代表H.264和H.265的工业软件)以及H.264,H.265和H.266(JM,HM和VTM的官方参考软件(JM,HM和VTM)进行比较, 分别)。当周期为32次并定向为PSNR时,我们的方案优于H.265 - HM以14.4%的比特率储蓄;当取向MS-SSIM时,我们的方案优于21.1%比特率保存的H.266 - VTM。
translated by 谷歌翻译
可扩展的编码,可以适应通道带宽变化,在当今复杂的网络环境中表现良好。然而,现有的可扩展压缩方法面临两个挑战:降低压缩性能和可扩展性不足。在本文中,我们提出了第一所学习的细粒度可扩展图像压缩模型(DeepFGS)来克服上述两个缺点。具体地,我们介绍一个特征分离骨干,将图像信息划分为基本和可伸缩的功能,然后通过信息重新排列策略通过通道重新分配特征通道。以这种方式,我们可以通过一次通过编码来生成连续可扩展的比特流。此外,我们重复使用解码器以降低DeepFGS的参数和计算复杂性。实验表明,我们的DeePFGS优于PSNR和MS-SSIM度量中的所有基于学习的可伸缩图像压缩模型和传统可伸缩图像编解码器。据我们所知,我们的DeePFGS是对学习的细粒度可扩展编码的首次探索,与基于学习的方法相比,实现了最优质的可扩展性。
translated by 谷歌翻译
具有基于块体系结构的运动建模已被广泛用于视频编码中,其中框架分为固定尺寸的块,这些块是独立补偿的。这通常会导致编码效率低下,因为固定尺寸的块几乎与对象边界不符。尽管已经引入了层次结构分区来解决这一问题,但运动矢量的增加限制了收益。最近,与立方体分配的图像的近似分割已经普及。可变大小的矩形片段(立方体)不仅容易适应基于块的图像/视频编码技术,而且还可以很好地与对象边界保持一致。这是因为立方分区基于同质性约束,从而最大程度地减少了平方误差的总和(SSE)。在本文中,我们研究了针对可扩展视频编码中使用的固定尺寸块的运动模型的潜力。具体而言,我们使用图片组(GOP)中的锚框的立方分区信息构建了运动补偿帧。然后,预测的当前帧已用作基础层,同时使用可扩展的HEVC编码器编码当前帧作为增强层。实验结果确认4K视频序列上节省了6.71%-10.90%的比特率。
translated by 谷歌翻译
将基于深学习视频编码已经吸引了大量的关注它的巨大潜力排挤视频序列的时空冗余。本文提出了一种高效的编解码器,即双路径生成对抗性的基于网络的视频编解码器(DGVC)。首先,我们提出了一个双通道的增强与生成对抗网络(DPEG)重建压缩视频的详细信息。所述DPEG由一个$ \阿尔法$自动编码器和卷积长短期记忆(ConvLSTM),它具有大的感受域和多帧的引用,和$ \测试$利于结构特征重构的-path - 残余关注块的路径,这有利于局部纹理特征的重建。两条路径融合,并通过生成对抗性的流程协同训练。其次,我们重用两个运动补偿和质量增强模块,这是与运动估计进一步结合DPEG网络,并在我们的DGVC框架熵编码模块。第三,我们采用深视频压缩和提高了联合训练,进一步提高率失真(RD)性能。与X265 LDP非常快的方式相比,我们的DGVC由39.39%/ 54.92%在相同的PSNR / MS-SSIM,其通过一个胜过国家的本领域深视频编解码器降低平均比特每像素(BPP)相当幅度。
translated by 谷歌翻译
本文提出了解码器 - 侧交叉分辨率合成(CRS)模块,以追求更好的压缩效率超出最新的通用视频编码(VVC),在那里我们在原始高分辨率(HR)处编码帧内帧,以较低的分辨率压缩帧帧间( LR),然后通过在先前的HR帧内和相邻的LR帧间帧内解解码LR帧间帧间帧帧。对于LR帧间帧,设计运动对准和聚合网络(MAN)以产生时间汇总的运动表示,以最佳保证时间平滑度;使用另一个纹理补偿网络(TCN)来生成从解码的HR帧内帧的纹理表示,以便更好地增强空间细节;最后,相似性驱动的融合引擎将运动和纹理表示合成为Upscale LR帧帧,以便去除压缩和分辨率重新采样噪声。我们使用所提出的CRS增强VVC,显示平均为8.76%和11.93%BJ {\ O} NTEGAARD Delta率(BD速率)分别在随机接入(RA)和低延延迟P(LDP)设置中的最新VVC锚点。此外,对基于最先进的超分辨率(SR)的VVC增强方法和消融研究的实验比较,进一步报告了所提出的算法的卓越效率和泛化。所有材料都将在HTTPS://njuvision.github.io /crs上公开进行可重复的研究。
translated by 谷歌翻译
上下文自适应熵模型的应用显着提高了速率 - 渗透率(R-D)的性能,在该表现中,超级培训和自回归模型被共同利用来有效捕获潜在表示的空间冗余。但是,潜在表示仍然包含一些空间相关性。此外,这些基于上下文自适应熵模型的方法在解码过程中无法通过并行计算设备,例如FPGA或GPU。为了减轻这些局限性,我们提出了一个学识渊博的多分辨率图像压缩框架,该框架利用了最近开发的八度卷积,以将潜在表示形式分配到高分辨率(HR)和低分辨率(LR)部分,类似于小波变换,这进一步改善了R-D性能。为了加快解码的速度,我们的方案不使用上下文自适应熵模型。取而代之的是,我们利用一个额外的超层,包括超级编码器和超级解码器,以进一步删除潜在表示的空间冗余。此外,将跨分辨率参数估计(CRPE)引入提出的框架中,以增强信息流并进一步改善速率延伸性能。提出了对总损耗函数提出的其他信息损失,以调整LR部分对最终位流的贡献。实验结果表明,与最先进的学术图像压缩方法相比,我们的方法分别将解码时间减少了约73.35%和93.44%,R-D性能仍然优于H.266/VVC(4:4::4:: 2:0)以及对PSNR和MS-SSIM指标的一些基于学习的方法。
translated by 谷歌翻译
在视频压缩中,通过运动和剩余补偿从先前解码的帧重复使用像素来提高编码效率。我们在视频帧中定义了两个层次冗余的两个级别:1)一阶:像素空间中的冗余,即跨相邻帧的像素值的相似性,该框架的相似性是通过运动和残差补偿有效捕获的,2)二阶:二阶:冗余:自然视频中的平稳运动引起的运动和残留地图。尽管大多数现有的神经视频编码文献都涉及一阶冗余,但我们解决了通过预测变量在神经视频编解码器中捕获二阶冗余的问题。我们引入了通用运动和残留预测因子,这些预测因素学会从先前解码的数据中推断出来。这些预测因子是轻量级的,可以使用大多数神经视频编解码器来提高其率延伸性能。此外,虽然RGB是神经视频编码文献中的主导色彩空间,但我们引入了神经视频编解码器的一般修改,以包含YUV420 Colorspace并报告YUV420的结果。我们的实验表明,使用众所周知的神经视频编解码器使用我们的预测因子可在UVG数据集中测得的RGB和YUV420 Colorspace中节省38%和34%的比特率。
translated by 谷歌翻译
尽管速率失真优化是传统图像和视频压缩的关键部分,但存在不存在许多方法,将该概念传送到端到端训练的图像压缩。大多数框架包含静态压缩和解压缩模型,在训练后固定,因此不可能实现高效的速率失真优化。在以前的工作中,我们提出了RDONET,它使RDO方法能够与HEVC中的自适应块分区相当。在本文中,我们通过引入RDO的低复杂性估算来增强培训,该培训将结果归因于培训。此外,我们提出了快速且非常快速的RDO推理模式。通过我们的小说训练方法,我们在先前的RDONET模型上实现了MS-SSIM的平均节省19.6%,其在可比较的传统深图像编码器上等于27.3%的速率节省。
translated by 谷歌翻译