Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.
translated by 谷歌翻译
遇到错误的损耗压缩正成为必不可少的技术,即当今科学项目的成功,并在模拟或仪器数据获取过程中产生了大量数据。它不仅可以显着减少数据大小,而且还可以基于用户指定的错误界限控制压缩错误。自动编码器(AE)模型已被广泛用于图像压缩中,但是很少有基于AE的压缩方法支持遇到错误的功能,这是科学应用所要求的。为了解决这个问题,我们使用卷积自动编码器探索以改善科学数据的错误损失压缩,并提供以下三个关键贡献。 (1)我们对各种自动编码器模型的特性进行了深入的研究,并根据SZ模型开发了基于错误的自动编码器的框架。 (2)我们在设计的基于AE的错误压缩框架中优化了主要阶段的压缩质量,并微调块大小和潜在尺寸,并优化了潜在向量的压缩效率。 (3)我们使用五个现实世界的科学数据集评估了我们提出的解决方案,并将其与其他六项相关作品进行了比较。实验表明,我们的解决方案在测试中的所有压缩机中表现出非常具有竞争性的压缩质量。从绝对的角度来看,与SZ2.1和ZFP相比,在高压比的情况下,它可以获得更好的压缩质量(压缩率和相同数据失真的100%〜800%提高)。
translated by 谷歌翻译
科学机器学习的进步改善了现代计算科学和工程应用。数据驱动的方法(例如动态模式分解(DMD))可以从动态系统生成的时空数据中提取相干结构,并推断上述系统的不同方案。时空数据作为快照,每次瞬间包含空间信息。在现代工程应用中,高维快照的产生可能是时间和/或资源要求。在本研究中,我们考虑了在大型数值模拟中增强DMD工作流程的两种策略:(i)快照压缩以减轻磁盘压力; (ii)使用原位可视化图像在运行时重建动力学(或部分)。我们通过两个3D流体动力学模拟评估我们的方法,并考虑DMD重建解决方案。结果表明,快照压缩大大减少了所需的磁盘空间。我们已经观察到,损耗的压缩将存储降低了几乎$ 50 \%$,而信号重建和其他关注数量的相对错误则较低。我们还使用原位可视化工具将分析扩展到了直接生成的数据,在运行时生成状态向量的图像文件。在大型模拟中,快照的产生可能足够慢,可以使用批处理算法进行推理。流DMD利用增量SVD算法,并随着每个新快照的到来更新模式。我们使用流式DMD来重建原位生成的图像的动力学。我们证明此过程是有效的,并且重建的动力学是准确的。
translated by 谷歌翻译
基于深度学习的潜在表示已被广泛用于众多科学可视化应用,例如等法相似性分析,音量渲染,流场合成和数据减少,仅举几例。但是,现有的潜在表示主要以无监督的方式从原始数据生成,这使得很难合并域兴趣以控制潜在表示的大小和重建数据的质量。在本文中,我们提出了一种新颖的重要性驱动的潜在表示,以促进领域利益引导的科学数据可视化和分析。我们利用空间重要性图来代表各种科学利益,并将它们作为特征转化网络的输入来指导潜在的生成。我们通过与自动编码器一起训练的无损熵编码算法,进一步降低了潜在尺寸,从而提高了存储和存储效率。我们通过多个科学可视化应用程序的数据进行定性和定量评估我们方法产生的潜图的有效性和效率。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
我们介绍了NeuralVDB,它通过利用机器学习的最新进步来提高现有的行业标准,以有效地存储稀疏体积数据,表示VDB。我们的新型混合数据结构可以通过数量级来减少VDB体积的内存足迹,同时保持其灵活性,并且只会产生一个小(用户控制的)压缩误差。具体而言,NeuralVDB用多个层次神经网络替换了浅和宽VDB树结构的下节点,这些神经网络分别通过神经分类器和回归器分别编码拓扑和价值信息。这种方法已证明可以最大化压缩比,同时保持高级VDB数据结构提供的空间适应性。对于稀疏的签名距离字段和密度量,我们已经观察到从已经压缩的VDB输入中的$ 10 \ times $ $ $ \ $ 100 \ $ 100 \ $ 100 \ $ 100 \ $ 100的压缩比,几乎没有可视化伪像。我们还展示了其在动画稀疏体积上的应用如何加速训练并产生时间连贯的神经网络。
translated by 谷歌翻译
分析来自湍流流动模拟的大规模数据是内存密集型,需要大量资源。这一主要挑战强调了对数据压缩技术的需求。在这项研究中,我们应用基于矢量量化的物理知识的深度学习技术,以产生来自三维湍流流的模拟的离散,低维表示数据。深度学习框架由卷积层组成,并将物理限制融合在流量上,例如保留速度梯度的不可压缩性和全局统计特征。使用基于比较的相似性和物理学的度量来评估模型的准确性。训练数据集是由不可压缩,统计静止,各向同性的各向同性湍流的直接数值模拟产生的。该损失数据压缩方案的性能不仅通过静止,各向同性湍流流动的看不见的数据评估,而且还评估了来自衰减各向同性湍流的数据和泰勒 - 绿色涡流的数据。将压缩比(CR)定义为原始数据大小与压缩的比率,结果表明我们的基于向量量化的模型可以提供CR $ = 85 $与$ O的均线错误(MSE)提供CR $ = 85 $(10 ^ {-3})$,以及忠实地重现流程统计数据的预测,除了有一些损失的最小尺度。与最近基于传统的AutoEncoder的研究相比,其中压缩在连续空间中进行压缩,我们的模型将CR提高了30多美元,并按一大阶数减少了MSE。我们的压缩模​​型是一种有吸引力的解决方案,适用于需要快速,高质量和低开销编码和大数据的解码。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
数值模拟中信息丢失可能来自各种来源,同时求解离散的部分微分方程。特别地,与等效的64位模拟相比,使用低精确的16位浮点算术进行模拟时,与精度相关的错误可能会积累在关注量中。在这里,低精度计算所需的资源要比高精度计算要低得多。最近提出的几种机器学习(ML)技术已成功纠正空间离散化引起的错误。在这项工作中,我们扩展了这些技术,以改善使用低数值精度进行的计算流体动力学(CFD)模拟。我们首先量化了在Kolmogorov强制湍流测试案例中累积的精度相关误差。随后,我们采用了卷积神经网络以及执行16位算术的完全可区分的数值求解器,以学习紧密耦合的ML-CFD混合求解器。与16位求解器相比,我们证明了ML-CFD混合求解器在减少速度场中的误差积累并在较高频率下改善动能光谱的功效。
translated by 谷歌翻译
培训广泛和深度神经网络(DNN)需要大量的存储资源,例如内存,因为在转发传播期间必须在存储器中保存中间激活数据,然后恢复以便向后传播。然而,由于硬件设计约束,诸如GPU之类的最先进的加速器(例如GPU)仅配备了非常有限的存储容量,这显着限制了在训练大规模DNN时的最大批量大小和性能加速。传统的记忆保存技术均受性能开销或受限互连带宽或特定互连技术的约束。在本文中,我们提出了一种新颖的记忆高效的CNN训练框架(称为Comet),利用错误界限的损耗压缩来显着降低训练的内存要求,以允许培训更大的模型或加速培训。不同于采用基于图像的有损压缩机(例如JPEG)的最先进的解决方案来压缩激活数据,我们的框架故意采用严格的错误控制机制来采用错误界限的损耗压缩。具体而言,我们对从改变的激活数据传播到梯度的压缩误差传播的理论分析,并经验探讨改变梯度对训练过程的影响。基于这些分析,我们优化了误报的损耗压缩,并提出了一种用于激活数据压缩的自适应误差控制方案。我们评估我们对最先进的解决方案的设计,其中包含五个广泛采用的CNN和Imagenet DataSet。实验表明,我们所提出的框架可以在基线训练中显着降低13.5倍,并分别在另一个最先进的基于压缩框架上的1.8倍,几乎没有准确性损失。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
尽管神经场景表示的潜力能够在高重建质量下有效压缩3D标量场,但使用场景表示网络的训练和数据重建步骤的计算复杂性限制了它们在实际应用中的使用。在本文中,我们分析了是否可以修改场景表示网络以减少这些限制以及这些架构是否也可以用于时间重建任务。我们提出了一种使用GPU Tensor核心的场景表示网络设计,将重建无缝化为片上芯片的横梁内核。此外,我们调查使用图像引导网络培训作为典型数据驱动方法的替代方案,我们探索了这种替代品质量和速度的潜在优势和缺点。作为时变字段的空间超分辨率方法的替代方案,我们提出了一种在潜在空间插值上建立的解决方案,以使任意粒度的随机访问重建。我们以评估科学可视化任务和概述未来研究方向的现场代表网络的优势和局限性的形式总结了我们的调查结果。
translated by 谷歌翻译
石油场和地震成像的储层模拟被称为石油和天然气(O&G)行业中高性能计算(HPC)最苛刻的工作量。模拟器数值参数的优化起着至关重要的作用,因为它可以节省大量的计算工作。最先进的优化技术基于运行大量模拟,特定于该目的,以找到良好的参数候选者。但是,在时间和计算资源方面,使用这种方法的成本高昂。这项工作提出了金枪鱼,这是一种新方法,可增强使用性能模型的储层流仿真的最佳数值参数的搜索。在O&G行业中,通常使用不同工作流程中的模型合奏来减少与预测O&G生产相关的不确定性。我们利用此类工作流程中这些合奏的运行来从每个模拟中提取信息,并在其后续运行中优化数值参数。为了验证该方法,我们在历史匹配(HM)过程中实现了它,该过程使用Kalman滤波器算法来调整储层模型的集合以匹配实际字段中观察到的数据。我们从许多具有不同数值配置的模拟中挖掘了过去的执行日志,并根据数据提取的功能构建机器学习模型。这些功能包括储层模型本身的属性,例如活动单元的数量,即模拟行为的统计数据,例如线性求解器的迭代次数。采样技术用于查询甲骨文以找到可以减少经过的时间的数值参数,而不会显着影响结果的质量。我们的实验表明,预测可以平均将HM工作流程运行时提高31%。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
我们在并行计算机架构上的图像的自适应粒子表示(APR)上的离散卷积运算符的本机实现数据结构和算法。 APR是一个内容 - 自适应图像表示,其本地地将采样分辨率局部调整到图像信号。已经开发为大,稀疏图像的像素表示的替代方案,因为它们通常在荧光显微镜中发生。已经显示出降低存储,可视化和处理此类图像的存储器和运行时成本。然而,这要求图像处理本身在APRS上运行,而无需中间恢复为像素。然而,设计高效和可扩展的APR-Native图像处理原语是APR的不规则内存结构的复杂性。这里,我们提供了使用可以在离散卷积方面配制的各种算法有效和本地地处理APR图像所需的算法建筑块。我们表明APR卷积自然地导致缩放 - 自适应算法,可在多核CPU和GPU架构上有效地平行化。与基于像素的算法和概念性数据的卷积相比,我们量化了加速度。我们在单个NVIDIA GeForce RTX 2080 Gaming GPU上实现了最多1 TB / s的像素等效吞吐量,而不是基于像素的实现的存储器最多两个数量级。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
扩展培训工作负载的能力是深度学习的关键性能推动者之一。主要缩放方法是基于数据并行GPU的培训,该培训已经被硬件和软件支持高效地支持高效的GPU通信,特别是通过带宽过度曝光。此支持以A价格出现:相对于其“消费者级”对应物,“云级”服务器之间存在幅度成本差异,但相对于其“消费者级”对应物,虽然服务器级和消费者级GPU可以具有类似的计算信封。在本文中,我们调查了昂贵的硬件过度控制方法是否可以通过算法和系统设计所涵盖,并提出称为CGX的框架,为通信压缩提供有效的软件支持。我们认为,在没有硬件支持的情况下,该框架能够从消费者级多GPU系统中删除通信瓶颈:在没有硬件支持的情况下:在培训现代模型和全部准确性方面时,我们的框架可以在商品上进行2-3倍的自动加速系统使用8个消费者级NVIDIA RTX 3090 GPU,并使其超越NVIDIA DGX-1服务器的吞吐量,其具有类似的峰值闪光,但是从带宽过度提供的益处。
translated by 谷歌翻译
我们提出了一种基于机器学习的方法来解决运输过程的研究,在连续力学中无处不在,特别关注那些由复杂的微物理学统治的那些现象,对理论调查不切实际,但表现出由闭合的数学表达可以描述的紧急行为。我们的机器学习模型,使用简单组件建造以及若干知名实践,能够学习运输过程的潜在表示,从标称误差表征数据的标称误差导致声音泛化属性,可以比预期更接近地面真理。通过对融合和宇宙等离子体相关的热通量抑制的长期问题的理想研究来证明这一点。 Our analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size.虽然学习的表示可以用作数值建模目的的插件,但是也可以利用上述误差分析来获得描述传输机制和理论值的可靠的数学表达式。
translated by 谷歌翻译
从自主驾驶中的对象检测到细胞生物学中细胞形态的分析,需要在广泛的应用中提取区域提取。存在两种主要方法:凸船体提取,对于这些方法存在,并且存在精确有效的算法和凹形船体,它们更擅长捕获现实世界的形状,但没有单个解决方案。尤其是在均匀网格的背景下,凹面船体算法在很大程度上是近似的,牺牲区域的完整性,以实现空间和时间效率。在这项研究中,我们提出了一种新颖的算法,可以提供最大的顶点凹面壳,以最大的(即像素完美)分辨率,并且对于速度效率折衷方案而言是可调的。我们的方法在多个下游应用程序中提供了优势,包括数据压缩,检索,可视化和分析。为了证明我们方法的实际实用性,我们专注于图像压缩。我们通过对单个图像内的不同区域的上下文依赖性压缩(熵编码嘈杂和预测性编码的结构化区域编码)证明了显着改进。我们表明,这些改进范围从生物医学图像到自然图像。除了图像压缩之外,我们的算法还可以更广泛地应用于为数据检索,可视化和分析的广泛实用应用。
translated by 谷歌翻译
近年来,已经提出了许多加速器来有效处理稀疏张量代数应用(例如稀疏的神经网络)。但是,这些建议是大而多样化的设计空间中的单个点。缺乏对这些稀疏张量加速器的系统描述和建模支持阻碍了硬件设计人员无法高效,有效的设计空间探索。本文首先提出了统一的分类法,以系统地描述各种稀疏张量加速器的设计空间。基于提议的分类法,它引入了Sparseloop,这是第一个快速,准确,灵活的分析建模框架,以实现稀疏张量加速器的早期评估和探索。 Sparseloop理解了一系列体系结构规格,包括各种数据流和稀疏加速功能(例如,消除基于零的计算)。使用这些规格,Sparseloop评估了设计的加工速度和能源效率,同时考虑了使用的数据流以及使用随机张量密度模型的稀疏加速度功能引入的数据移动和计算。在代表性的加速器和工作负载中,Sparseloop的建模速度比周期级模拟快2000倍,保持相对性能趋势,并达到0.1%至8%的平均误差。通过案例研究,我们证明了Sparseloop有助于揭示设计稀疏张量加速器的重要见解的能力(例如,共同设计正交设计方面很重要)。
translated by 谷歌翻译