使用知识图(KGS)增强预培训的语言模型在各种型号推理任务方面取得了成功。但是,对于给定的任务实例,kg或kg的某些部分可能没有用。虽然kg-cugmented模型经常使用注意力集中在特定的kg组件上,但仍然始终使用kg,并且从未明确教授应该使用关注机制。同时,显着性方法可以测量kg特征(例如,图形,节点,路径)对模型进行正确预测的影响,从而解释了哪个kg特征是有用的。本文探讨了可用于提高kg增强模型的性能的显着性解释。首先,我们建议创建粗(是kg有用的?)和精细(kg中的节点/路径是有用的?)显着解释。其次,为了激励基于显着的监督,我们分析了Oracle kg-angimented模型,即直接使用显着解释作为引导他们注意的额外输入。第三,我们提出Salkg,kg-ug-anded模型的框架,以从粗糙和/或罚款解释中学习。给定从任务的培训集创建的显着解释,Salkg共同列举模型来预测解释,然后通过参加预测的解释突出显示的kg功能来解决任务。在三个型号QA基准(CSQA,OBQA,Codah)和一系列KG增强模型中,我们表明Salkg可以产生相当大的性能增益 - 对CSQA的绝对改善高达2.76%。
translated by 谷歌翻译
通过突出显示最大影响输出的文本输入,提取理由对给定任务实例的预测解释了语言模型(LM)预测。理想情况下,理由提取应该是忠诚的(反映LM的行为),合理的(对人类来说),数据效率和快速,而不牺牲LM的任务表现。先前的基本原理提取工程由专门的方法提供解决这些desiderata的各个子集 - 但从来没有五个。狭隘地关注某些Desiderata通常会以忽略的牺牲品为代价,因此现有的理由提取器在现实世界应用中往往是不切实际的。为了解决这一挑战,我们提出了Unirex,统一和高度灵活的理由提取学习框架,允许用户容易地占所有五个因素。 UNIREX使理论提取器培训过程的端到端定制,支持任意:(1)启发式/学习的理由提取者,(2)忠诚和/或合理性目标的组合,以及(3)金理由监管的数额。在三个文本分类数据集中,我们最好的UNIrex配置实现了与强基线相比的五个desiderata的较高余额。此外,Unirex培训的理由提取器甚至可以推广到看不见的数据集和任务。
translated by 谷歌翻译
使用从预先接受训练的语言模型(LMS)和知识图表(LMS)和知识图表(kgs)回答问题的问题提出了两个挑战:给定QA上下文(问答选择),方法需要(i)从大型千克识别相关知识,(ii)对QA上下文和kg进行联合推理。在这项工作中,我们提出了一种新的模型,QA-GNN,它通过两个关键创新解决了上述挑战:(i)相关评分,我们使用LMS来估计KG节点相对于给定的QA上下文的重要性,以及(ii)联合推理,我们将QA上下文和kg连接到联合图,并通过图形神经网络相互更新它们的表示。我们评估了QA基准的模型(CommanSeaseQA,OpenBookQA)和生物医学(MedQa-USMLE)域名。QA-GNN优于现有的LM和LM + kg模型,并表现出可解释和结构化推理的能力,例如,正确处理问题的否定。
translated by 谷歌翻译
预训练的语言模型(PTLM)已显示出在自然语言任务上表现良好。许多先前的作品都以通过知识图(KGS)标记的关系链接的实体的形式利用结构性常识来协助PTLM。检索方法使用kg作为单独的静态模块,该模块限制了覆盖范围,因为kgs包含有限的知识。生成方法训练PTLMS kg三倍以提高获得知识的规模。但是,对符号KG实体的培训限制了其在涉及自然语言文本的任务中的适用性,在这些任务中,它们忽略了整体上下文。为了减轻这种情况,我们提出了一个以句子为条件的常识性上下文化器(COSE-CO)作为输入,以使其在生成与输入文本的整体上下文相关的任务中通常可用。为了训练Cose-Co,我们提出了一个新的数据集,其中包括句子和常识知识对。 COSE-CO推断出的知识是多种多样的,并且包含了基础KG中不存在的新实体。我们增强了在多选质量质量检查和开放式常识性推理任务中产生的知识,从而改善了CSQA,ARC,QASC和OBQA数据集的当前最佳方法。我们还展示了其在改善释义生成任务的基线模型方面的适用性。
translated by 谷歌翻译
现有的kg增强模型用于问题回答主要专注于设计精心图形神经网络(GNN)以模拟知识图(KG)。但是,它们忽略了(i)有效地融合和推理过问题上下文表示和kg表示,并且(ii)在推理期间自动从嘈杂的KG中选择相关节点。在本文中,我们提出了一种新颖的型号,其通过LMS和GNN的联合推理和动态KGS修剪机制解决了上述限制。具体而言,ConntLK通过新的密集双向注意模块在LMS和GNN之间执行联合推理,其中每个问题令牌参加KG节点,每个KG节点都会参加问题令牌,并且两个模态表示熔断和通过多次熔断和更新。步互动。然后,动态修剪模块使用通过联合推理产生的注意重量来递归修剪无关的kg节点。我们在CommanSENSEQA和OpenBookQA数据集上的结果表明,我们的模态融合和知识修剪方法可以更好地利用相关知识来推理。
translated by 谷歌翻译
虽然许多方法旨在通过突出突出特征来解释预测,但是这些解释服务的目标以及如何评估它们通常不合适。在这项工作中,我们介绍了一个框架,通过在训练教师模型的学生模型上授予学生模型的准确性增益来量化解释的价值。至关重要的是,培训期间学生可以使用解释,但在测试时间不可用。与先前的建议相比,我们的方法不太易于绘制,实现原则,自动,模型 - 无话会的归属。使用我们的框架,我们比较了许多归属方法,用于文本分类和问题应答,并观察不同学生模型架构和学习策略之间的定量差异(在中度到高度)。
translated by 谷歌翻译
深度学习模型在各种自然语言处理任务中设置了基准。然而,这些模型需要巨大的培训数据,这在许多实际问题中是不可行的。虽然各种技术如域适应,但是几个学习技术解决了这个问题,我们介绍了一种积极地将外部知识的新技术引入学习以解决低数据制度问题。我们提出了一种称为Actknow的技术,它基于知识图(KG)的“按需”在学习中,激发了知识图表(KG)的知识(QA)。通过从概念网络中注入世界知识,我们对基于文本的基于文本的变压器模型的临时挑战 - 在低数据制度中的变压器模型上显示了显着的改进。例如,通过仅使用20%的训练示例,我们分别证明了弧形挑战和OpenBookQA的准确性提高了4%。
translated by 谷歌翻译
目前,自然语言理解(NLU)中最根本的两个挑战是:(a)如何以“正确”的原因确定基于深度学习的模型是否在NLU基准上得分很高;(b)了解这些原因甚至是什么。我们研究了关于两个语言“技能”的阅读理解模型的行为:核心分辨率和比较。我们为从系统中预期的推理步骤提出了一个定义,该系统将“缓慢阅读”,并将其与各种大小的贝特家族的五个模型的行为进行比较,这是通过显着分数和反事实解释观察到的。我们发现,对于比较(而不是核心),基于较大编码器的系统更有可能依靠“正确”的信息,但即使他们在概括方面也很难,表明他们仍然学习特定的词汇模式,而不是比较的一般原则。
translated by 谷歌翻译
在知识图上回答自然语言问题(KGQA)仍然是通过多跳推理理解复杂问题的巨大挑战。以前的努力通常利用与实体相关的文本语料库或知识图(kg)嵌入作为辅助信息来促进答案选择。但是,实体之间隐含的富裕语义远未得到很好的探索。本文提议通过利用关系路径的混合语义来改善多跳kgqa。具体而言,我们基于新颖的旋转和规模的实体链接链接预测框架,集成了关系路径的明确文本信息和隐式kg结构特征。在三个KGQA数据集上进行的广泛实验证明了我们方法的优势,尤其是在多跳场景中。进一步的调查证实了我们方法在问题和关系路径之间的系统协调,以识别答案实体。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
今天的大部分AI系统都专注于使用自我关注机制和变压器架构在大量多样化的数据中实现令人印象深刻的性能收益。在本文中,我们建议使用外部注意机制增强变压器架构,以带来外部知识和背景。通过将外部信息集成到预测过程中,我们希望减少对更大的模型的需求,并增加AI系统的民主化。我们发现所提出的外部注意机制可以显着提高现有AI系统的性能,使从业者可以轻松地将基础AI模型自定义到许多不同的下游应用程序。特别是,我们专注于勤杂朗语推理的任务,展示所提出的外部注意机制可以增加现有的变压器模型,并显着提高模型的推理能力。拟议的系统,知识外部关注推理(Kear),达到了开放的铜商QA研究基准的人类奇偶校验,其准确性为89.4 \%,与人类准确性为88.9 \%。
translated by 谷歌翻译
这项工作调查了以知识图(kg)形式的外部知识来源的理解问题的学习和推理的挑战。我们提出了一种新型的图形神经网络体系结构,称为动态相关图形网络(DRGN)。 DRGN根据问题和答案实体在给定的KG子图上运行,并使用节点之间的相关得分来动态建立新的边缘,以在图形网络中学习节点表示。相关性的这种显式用法作为图表具有以下优点,a)模型可以利用现有关系,重新缩放节点权重,并影响邻里节点的表示方式在kg子图中汇总的方式,b)恢复推理所需的千克中缺失的边缘。此外,作为副产品,由于考虑了问题节点与图形实体之间的相关性,我们的模型改善了处理负面问题。与最新发布的结果相比,我们提出的方法在两个质量检查基准CommonSenseQA和OpenBookQA上显示了竞争性能。
translated by 谷歌翻译
As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced human virtues such as fairness, accountability, transparency (FaccT), and unbiasedness. Recently, techniques in Explainable Artificial Intelligence (XAI) are attracting considerable attention, and have tremendously helped Machine Learning (ML) engineers in understanding AI models. However, at the same time, we started to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI, how can we better empower ML engineers in steering their DNNs so that the model's reasonableness and performance can be improved as intended? This article provides a timely and extensive literature overview of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs' reasoning process by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide a formal definition of EGL and its general learning paradigm. Secondly, an overview of the key factors for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics for EGL are provided. Finally, the current and potential future application areas and directions of EGL are discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative studies among existing EGL models in various popular application domains, such as Computer Vision (CV) and Natural Language Processing (NLP) domains.
translated by 谷歌翻译
Multi-hop Question Answering over Knowledge Graph~(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question on a large-scale Knowledge Graph (KG). To cope with the vast search space, existing work usually adopts a two-stage approach: it firstly retrieves a relatively small subgraph related to the question and then performs the reasoning on the subgraph to accurately find the answer entities. Although these two stages are highly related, previous work employs very different technical solutions for developing the retrieval and reasoning models, neglecting their relatedness in task essence. In this paper, we propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning. For model architecture, UniKGQA consists of a semantic matching module based on a pre-trained language model~(PLM) for question-relation semantic matching, and a matching information propagation module to propagate the matching information along the edges on KGs. For parameter learning, we design a shared pre-training task based on question-relation matching for both retrieval and reasoning models, and then propose retrieval- and reasoning-oriented fine-tuning strategies. Compared with previous studies, our approach is more unified, tightly relating the retrieval and reasoning stages. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our method on the multi-hop KGQA task. Our codes and data are publicly available at https://github.com/RUCAIBox/UniKGQA.
translated by 谷歌翻译
Neural language models (LMs) have achieved impressive results on various language-based reasoning tasks by utilizing latent knowledge encoded in their own pretrained parameters. To make this reasoning process more explicit, recent works retrieve a rationalizing LM's internal knowledge by training or prompting it to generate free-text rationales, which can be used to guide task predictions made by either the same LM or a separate reasoning LM. However, rationalizing LMs require expensive rationale annotation and/or computation, without any assurance that their generated rationales improve LM task performance or faithfully reflect LM decision-making. In this paper, we propose PINTO, an LM pipeline that rationalizes via prompt-based learning, and learns to faithfully reason over rationales via counterfactual regularization. First, PINTO maps out a suitable reasoning process for the task input by prompting a frozen rationalizing LM to generate a free-text rationale. Second, PINTO's reasoning LM is fine-tuned to solve the task using the generated rationale as context, while regularized to output less confident predictions when the rationale is perturbed. Across four datasets, we show that PINTO significantly improves the generalization ability of the reasoning LM, yielding higher performance on both in-distribution and out-of-distribution test sets. Also, we find that PINTO's rationales are more faithful to its task predictions than those generated by competitive baselines.
translated by 谷歌翻译
Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GNNEXPLAINER, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNEXPLAINER identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction. Further, GNNEXPLAINER can generate consistent and concise explanations for an entire class of instances. We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.
translated by 谷歌翻译
机器学习从业者通常可以访问数据的频谱:目标任务(通常是有限),未标记的数据和辅助数据的标记数据,用于其他任务的许多可用标记的数据集。我们描述了TAGLET,一个系统为学习技术,用于自动利用所有三种类型的数据并创建高质量的可服装分类器。 TAGLET的关键组件是:(1)根据知识图组织组织的辅助数据,(2)封装用于利用辅助和未标记数据的不同方法的模块,以及(3)将被整合模块组合成可用的蒸馏阶段模型。我们将TAGLETS与最先进的传输学习和半监督学习方法进行比较,四个图像分类任务。我们的研究涵盖了一系列设置,改变了标记数据的量和辅助数据的语义相关性到目标任务。我们发现,辅助和未标记数据的智能融合到多个学习技术使Taglet能够匹配 - 并且最常见的是这些替代方案。 Taglets可作为Github.com/batsresearch/taglet的开源系统使用。
translated by 谷歌翻译
The goal of building dialogue agents that can converse with humans naturally has been a long-standing dream of researchers since the early days of artificial intelligence. The well-known Turing Test proposed to judge the ultimate validity of an artificial intelligence agent on the indistinguishability of its dialogues from humans'. It should come as no surprise that human-level dialogue systems are very challenging to build. But, while early effort on rule-based systems found limited success, the emergence of deep learning enabled great advance on this topic. In this thesis, we focus on methods that address the numerous issues that have been imposing the gap between artificial conversational agents and human-level interlocutors. These methods were proposed and experimented with in ways that were inspired by general state-of-the-art AI methodologies. But they also targeted the characteristics that dialogue systems possess.
translated by 谷歌翻译
作为当今最受欢迎的机器学习模型之一,Graph神经网络(GNN)最近引起了激烈的兴趣,其解释性也引起了人们的兴趣。用户对更好地了解GNN模型及其结果越来越感兴趣。不幸的是,当今的GNN评估框架通常依赖于合成数据集,从而得出有限范围的结论,因为问题实例缺乏复杂性。由于GNN模型被部署到更关键的任务应用程序中,因此我们迫切需要使用GNN解释性方法的共同评估协议。在本文中,据我们最大的知识,我们提出了针对GNN解释性的第一个系统评估框架,考虑了三种不同的“用户需求”的解释性:解释焦点,掩盖性质和掩蔽转换。我们提出了一个独特的指标,该指标将忠诚度措施结合在一起,并根据其足够或必要的质量对解释进行分类。我们将自己范围用于节点分类任务,并比较GNN的输入级解释性领域中最具代表性的技术。对于广泛使用的合成基准测试,令人惊讶的是,诸如个性化Pagerank之类的浅水技术在最小计算时间内具有最佳性能。但是,当图形结构更加复杂并且节点具有有意义的特征时,根据我们的评估标准,基于梯度的方法,尤其是显着性。但是,没有人在所有评估维度上占主导地位,而且总会有一个权衡。我们在eBay图上的案例研究中进一步应用了我们的评估协议,以反映生产环境。
translated by 谷歌翻译
知识库问题的最现有的方法接听(KBQA)关注特定的基础知识库,原因是该方法的固有假设,或者因为在不同的知识库上评估它需要非琐碎的变化。然而,许多流行知识库在其潜在模式中的相似性份额可以利用,以便于跨知识库的概括。为了实现这一概念化,我们基于2级架构介绍了一个KBQA框架,该架构明确地将语义解析与知识库交互分开,促进了数据集和知识图中的转移学习。我们表明,具有不同潜在知识库的数据集预先灌注可以提供显着的性能增益并降低样本复杂性。我们的方法可实现LC-Quad(DBPedia),WEDQSP(FreeBase),简单问话(Wikidata)和MetaQA(WikiMovies-KG)的可比性或最先进的性能。
translated by 谷歌翻译