建设通用机器人在人类水平的各种环境中对大量的任务进行众所周知的复杂。它需要机器人学习是采样的,更概括的,可概括的,组成和增量。在这项工作中,我们介绍了一个称为SAGCI-System的系统学习框架,实现了超过四种要求。我们的系统首先采用由安装在机器人手腕上的摄像机收集的原始点云作为输入,并产生所代表为URDF的周围环境的初始建模。我们的系统采用了一个加载URDF的学习增强的可分辨率模拟。然后,机器人利用交互式感知来与环境交互,并修改URDF。利用模拟,我们提出了一种新的基于模型的RL算法,这些RL算法结合了以上的对象和机器人为中心的方法,以有效地产生完成操纵任务的策略。我们应用我们的系统,以进行仿真和现实世界的铰接物体操纵。广泛的实验表明了我们提出的学习框架的有效性。 https://sites.google.com/view/egci提供了补充材料和视频。
translated by 谷歌翻译
部件组件是机器人中的典型但具有挑战性的任务,机器人将一组各个部件组装成完整的形状。在本文中,我们开发了用于家具组件的机器人组装仿真环境。我们将零件装配任务制定为混凝土加固学习问题,并提出了一种机器人的管道,以学习组装多种椅子。实验表明,当使用看不见的椅子进行测试时,我们的方法在以上对象的环境下实现了74.5%的成功率,并在完整环境下实现了50.0%。我们采用RRT-CONNECT算法作为基线,在计算时间明显更长的时间后,只能实现18.8%的成功率。我们的项目网页提供了补充材料和视频。
translated by 谷歌翻译
在本文中,我们探讨了机器人是否可以学会重新应用一组多样的物体以实现各种所需的掌握姿势。只要机器人的当前掌握姿势未能执行所需的操作任务,需要重新扫描。具有这种能力的赋予机器人具有在许多领域中的应用,例如制造或国内服务。然而,由于日常物体中的几何形状和状态和行动空间的高维度,这是一个具有挑战性的任务。在本文中,我们提出了一种机器人系统,用于将物体的部分点云和支持环境作为输入,输出序列和放置操作的序列来转换到所需的对象掌握姿势。关键技术包括神经稳定放置预测器,并通过利用和改变周围环境来引发基于图形的解决方案。我们介绍了一个新的和具有挑战性的合成数据集,用于学习和评估所提出的方法。我们展示了我们提出的系统与模拟器和现实世界实验的有效性。我们的项目网页上有更多视频和可视化示例。
translated by 谷歌翻译
我们探索一种新的方法来感知和操纵3D铰接式物体,该物体可以概括地使机器人阐明看不见的对象。我们提出了一个基于视觉的系统,该系统学会预测各种铰接物体的各个部分的潜在运动,以指导系统的下游运动计划以表达对象。为了预测对象运动,我们训练一个神经网络,以输出一个密集的向量场,代表点云中点云中点的点运动方向。然后,我们根据该向量领域部署一个分析运动计划者,以实现产生最大发音的政策。我们完全在模拟中训练视觉系统,并演示了系统在模拟和现实世界中概括的对象实例和新颖类别的能力,并将我们的政策部署在没有任何填充的锯耶机器人上。结果表明,我们的系统在模拟和现实世界实验中都达到了最先进的性能。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
虽然对理解计算机视觉中的手对象交互进行了重大进展,但机器人执行复杂的灵巧操纵仍然非常具有挑战性。在本文中,我们提出了一种新的平台和管道DEXMV(来自视频的Dexerous操纵)以进行模仿学习。我们设计了一个平台:(i)具有多指机器人手和(ii)计算机视觉系统的复杂灵巧操纵任务的仿真系统,以记录进行相同任务的人类手的大规模示范。在我们的小说管道中,我们从视频中提取3D手和对象姿势,并提出了一种新颖的演示翻译方法,将人类运动转换为机器人示范。然后,我们将多个仿制学习算法与演示进行应用。我们表明,示威活动确实可以通过大幅度提高机器人学习,并解决独自增强学习无法解决的复杂任务。具有视频的项目页面:https://yzqin.github.io/dexmv
translated by 谷歌翻译
可变形的物体操纵在我们的日常生活中具有许多应用,例如烹饪和洗衣折叠。操纵弹性塑料对象(例如面团)特别具有挑战性,因为面团缺乏紧凑的状态表示,需要接触丰富的相互作用。我们考虑将面团从RGB-D图像中变成特定形状的任务。尽管该任务对于人类来说似乎是直观的,但对于诸如幼稚轨迹优化之类的常见方法,存在局部最佳选择。我们提出了一种新型的轨迹优化器,该优化器通过可区分的“重置”模块进行优化,将单阶段的固定定位轨迹转换为多阶段的多阶段多启动轨迹,其中所有阶段均已共同优化。然后,我们对轨迹优化器生成的演示进行训练闭环政策。我们的策略将部分点云作为输入,从而使从模拟到现实世界的转移易于转移。我们表明,我们的政策可以执行现实世界的面团操纵,将面团的球弄平到目标形状。
translated by 谷歌翻译
铰接的物体在日常生活中很丰富。发现它们的部位,关节和运动学对于机器人与这些物体相互作用至关重要。我们从Action(SFA)引入结构,该框架通过一系列推断相互作用来发现3D部分的几何形状和未看到的表达对象的关节参数。我们的主要见解是,应考虑构建3D明显的CAD模型的3D相互作用和感知,尤其是在训练过程中未见的类别的情况下。通过选择信息丰富的交互,SFA发现零件并揭示最初遮挡的表面,例如封闭抽屉的内部。通过在3D中汇总视觉观测,SFA可以准确段段多个部分,重建零件几何形状,并在规范坐标框架中渗透所有关节参数。我们的实验表明,在模拟中训练的单个SFA模型可以推广到具有未知运动结构和现实世界对象的许多看不见的对象类别。代码和数据将公开可用。
translated by 谷歌翻译
能够重现从光相互作用到接触力学的物理现象,模拟器在越来越多的应用程序域变得越来越有用,而现实世界中的相互作用或标记数据很难获得。尽管最近取得了进展,但仍需要大量的人为努力来配置模拟器以准确地再现现实世界的行为。我们介绍了一条管道,将反向渲染与可区分的模拟相结合,从而从深度或RGB视频中创建数字双铰接式机制。我们的方法自动发现关节类型并估算其运动学参数,而整体机制的动态特性则调整为实现物理准确的模拟。正如我们在模拟系统上所证明的那样,在我们的派生模拟传输中优化的控制策略成功地回到了原始系统。此外,我们的方法准确地重建了由机器人操纵的铰接机制的运动学树,以及现实世界中耦合的摆机制的高度非线性动力学。网站:https://Eric-heiden.github.io/video2sim
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
机器人将机器人的无缝集成到人类环境需要机器人来学习如何使用现有的人类工具。学习工具操纵技能的目前方法主要依赖于目标机器人环境中提供的专家演示,例如,通过手动引导机器人操纵器或通过远程操作。在这项工作中,我们介绍了一种自动化方法,取代了一个专家演示,用YouTube视频来学习工具操纵策略。主要贡献是双重的。首先,我们设计一个对齐过程,使模拟环境与视频中观察到的真实世界。这是作为优化问题,找到刀具轨迹的空间对齐,以最大化环境给出的稀疏目标奖励。其次,我们描述了一种专注于工具的轨迹而不是人类的运动的模仿学习方法。为此,我们将加强学习与优化过程相结合,以基于对准环境中的工具运动来找到控制策略和机器人的放置。我们展示了仿真中的铲子,镰刀和锤子工具的建议方法,并展示了训练有素的政策对真正的弗兰卡·埃米卡熊猫机器人示范的卫生政策的有效性。
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
Solving real-world sequential manipulation tasks requires robots to have a repertoire of skills applicable to a wide range of circumstances. To acquire such skills using data-driven approaches, we need massive and diverse training data which is often labor-intensive and non-trivial to collect and curate. In this work, we introduce Active Task Randomization (ATR), an approach that learns visuomotor skills for sequential manipulation by automatically creating feasible and novel tasks in simulation. During training, our approach procedurally generates tasks using a graph-based task parameterization. To adaptively estimate the feasibility and novelty of sampled tasks, we develop a relational neural network that maps each task parameter into a compact embedding. We demonstrate that our approach can automatically create suitable tasks for efficiently training the skill policies to handle diverse scenarios with a variety of objects. We evaluate our method on simulated and real-world sequential manipulation tasks by composing the learned skills using a task planner. Compared to baseline methods, the skills learned using our approach consistently achieve better success rates.
translated by 谷歌翻译
操纵铰接对象通常需要多个机器人臂。使多个机器人武器能够在铰接物体上协作地完成操纵任务是一项挑战性。在本文中,我们呈现$ \ textbf {v-mao} $,这是一个学习铰接物体的多臂操纵的框架。我们的框架包括一个变分生成模型,可以为每个机器人臂的物体刚性零件学习接触点分布。从与模拟环境的交互获得训练信号,该模拟环境是通过规划和用于铰接对象的对象控制的新颖制定的新颖制定。我们在定制的Mujoco仿真环境中部署了我们的框架,并证明我们的框架在六种不同的对象和两个不同的机器人上实现了高成功率。我们还表明,生成建模可以有效地学习铰接物体上的接触点分布。
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
动态状态表示学习是机器人学习中的重要任务。可以捕获动力学信息的潜在空间在加速模型的自由强化学习,缩小模拟到现实差距以及降低运动计划的复杂性等领域中具有广泛的应用。但是,当前的动态状态表示方法在复杂的动态系统(例如可变形对象)上的扩展很差,并且不能将良好定义的仿真函数直接嵌入到训练管道中。我们提出了DIFFSRL,这是一种动态状态表示学习管道,利用可区分的模拟可以将复杂的动力学模型嵌入到端到端训练的一部分。我们还将可区分的动态约束作为管道的一部分集成,这为潜在状态提供了意识到动态约束的激励措施。我们进一步建立了在软体体模拟系统PlastonElab上学习基准的国家表示基准,我们的模型在捕获长期动态和奖励预测方面表现出了卓越的性能。
translated by 谷歌翻译
机器人操纵器广泛用于现代制造过程。但是,它们在非结构化环境中的部署仍然是一个公开问题。为了应对现实世界操纵任务的多样性,复杂性和不确定性,必须开发灵活的框架,以减少环境特征的假设。近年来,加固学习(RL)为单臂机器人操纵表现出了很大的结果。然而,专注于双臂操纵的研究仍然很少见。根据经典的控制视角,解决这些任务通常涉及两个操纵器之间的相互作用的复杂建模,以及在任务中遇到的对象,以及在控制水平处耦合的两个机器人。相反,在这项工作中,我们探讨了无模型RL对双臂组件的适用性。当我们的目标是促进不限于双臂组件的方法,而是一般来说,双臂操纵,我们将尽量措施保持建模。因此,为了避免建模两个机器人与使用的组装工具之间的相互作用,我们呈现了一种模块化方法,其具有两个分散的单臂控制器,其使用单个集中式学习策略耦合。我们只使用稀疏奖励将建模努力降低到最低限度。我们的建筑使成功的装配和简单地从模拟转移到现实世界。我们展示了框架对双臂钉孔的有效性,并分析了不同动作空间的样品效率和成功率。此外,我们在处理位置不确定性时,我们比较不同的间隙和展示干扰恢复和稳健性的结果。最后,我们Zero-Shot Transfer策略在模拟中培训到现实世界并评估其性能。
translated by 谷歌翻译