Seismic data often undergoes severe noise due to environmental factors, which seriously affects subsequent applications. Traditional hand-crafted denoisers such as filters and regularizations utilize interpretable domain knowledge to design generalizable denoising techniques, while their representation capacities may be inferior to deep learning denoisers, which can learn complex and representative denoising mappings from abundant training pairs. However, due to the scarcity of high-quality training pairs, deep learning denoisers may sustain some generalization issues over various scenarios. In this work, we propose a self-supervised method that combines the capacities of deep denoiser and the generalization abilities of hand-crafted regularization for seismic data random noise attenuation. Specifically, we leverage the Self2Self (S2S) learning framework with a trace-wise masking strategy for seismic data denoising by solely using the observed noisy data. Parallelly, we suggest the weighted total variation (WTV) to further capture the horizontal local smooth structure of seismic data. Our method, dubbed as S2S-WTV, enjoys both high representation abilities brought from the self-supervised deep network and good generalization abilities of the hand-crafted WTV regularizer and the self-supervised nature. Therefore, our method can more effectively and stably remove the random noise and preserve the details and edges of the clean signal. To tackle the S2S-WTV optimization model, we introduce an alternating direction multiplier method (ADMM)-based algorithm. Extensive experiments on synthetic and field noisy seismic data demonstrate the effectiveness of our method as compared with state-of-the-art traditional and deep learning-based seismic data denoising methods.
translated by 谷歌翻译
Since higher-order tensors are naturally suitable for representing multi-dimensional data in real-world, e.g., color images and videos, low-rank tensor representation has become one of the emerging areas in machine learning and computer vision. However, classical low-rank tensor representations can only represent data on finite meshgrid due to their intrinsical discrete nature, which hinders their potential applicability in many scenarios beyond meshgrid. To break this barrier, we propose a low-rank tensor function representation (LRTFR), which can continuously represent data beyond meshgrid with infinite resolution. Specifically, the suggested tensor function, which maps an arbitrary coordinate to the corresponding value, can continuously represent data in an infinite real space. Parallel to discrete tensors, we develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization. We theoretically justify that both low-rank and smooth regularizations are harmoniously unified in the LRTFR, which leads to high effectiveness and efficiency for data continuous representation. Extensive multi-dimensional data recovery applications arising from image processing (image inpainting and denoising), machine learning (hyperparameter optimization), and computer graphics (point cloud upsampling) substantiate the superiority and versatility of our method as compared with state-of-the-art methods. Especially, the experiments beyond the original meshgrid resolution (hyperparameter optimization) or even beyond meshgrid (point cloud upsampling) validate the favorable performances of our method for continuous representation.
translated by 谷歌翻译
基于深度学习的高光谱图像(HSI)恢复方法因其出色的性能而广受欢迎,但每当任务更改的细节时,通常都需要昂贵的网络再培训。在本文中,我们建议使用有效的插入方法以统一的方法恢复HSI,该方法可以共同保留基于优化方法的灵活性,并利用深神经网络的强大表示能力。具体而言,我们首先开发了一个新的深HSI DeNoiser,利用了门控复发单元,短期和长期的跳过连接以及增强的噪声水平图,以更好地利用HSIS内丰富的空间光谱信息。因此,这导致在高斯和复杂的噪声设置下,在HSI DeNosing上的最新性能。然后,在处理各种HSI恢复任务之前,将提议的DeNoiser插入即插即用的框架中。通过对HSI超分辨率,压缩感测和内部进行的广泛实验,我们证明了我们的方法经常实现卓越的性能,这与每个任务上的最先进的竞争性或甚至更好任何特定任务的培训。
translated by 谷歌翻译
最近,从图像中提取的不同组件的低秩属性已经考虑在MAN Hypspectral图像去噪方法中。然而,这些方法通常将3D矩阵或1D向量展开,以利用现有信息,例如非识别空间自相似性(NSS)和全局光谱相关(GSC),其破坏了高光谱图像的内在结构相关性(HSI) )因此导致恢复质量差。此外,由于在HSI的原始高维空间中的矩阵和张量的矩阵和张量的参与,其中大多数受到重大计算负担问题。我们使用子空间表示和加权低级张量正则化(SWLRTR)进入模型中以消除高光谱图像中的混合噪声。具体地,为了在光谱频带中使用GSC,将噪声HSI投影到简化计算的低维子空间中。之后,引入加权的低级张量正则化术语以表征缩减图像子空间中的前导。此外,我们设计了一种基于交替最小化的算法来解决非耦合问题。模拟和实时数据集的实验表明,SWLRTR方法比定量和视觉上的其他高光谱去噪方法更好。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
盲图修复(IR)是计算机视觉中常见但充满挑战的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图恢复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描绘了降解过程。在此提出的模型中,PICEL的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D。在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变异推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理退化估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一种红外过程。对两项典型的盲型IR任务进行实验,即图像降解和超分辨率,表明所提出的方法比当前最新的方法实现了卓越的性能。
translated by 谷歌翻译
高光谱成像为各种应用提供了新的视角,包括使用空降或卫星遥感,精密养殖,食品安全,行星勘探或天体物理学的环境监测。遗憾的是,信息的频谱分集以各种劣化来源的牺牲品,并且目前获取的缺乏准确的地面“清洁”高光谱信号使得恢复任务具有挑战性。特别是,与传统的RGB成像问题相比,培训深度神经网络用于恢复难以深入展现的传统RGB成像问题。在本文中,我们提倡基于稀疏编码原理的混合方法,其保留与手工图像前导者编码域知识的经典技术的可解释性,同时允许在没有大量数据的情况下训练模型参数。我们在各种去噪基准上展示了我们的方法是计算上高效并且显着优于现有技术。
translated by 谷歌翻译
最近,基于深度学习的图像降级方法在测试数据上具有与训练集相同的测试数据的有希望的性能,在该数据中,已经学习了基于合成或收集的现实世界训练数据的各种denoising模型。但是,在处理真实世界的嘈杂图像时,Denoising的性能仍然受到限制。在本文中,我们提出了一种简单而有效的贝叶斯深集合(BDE)方法,用于真实世界图像denoising,其中可以融合使用各种训练数据设置进行预训练的几位代表性的深层Denoiser,以提高稳健性。 BDE的基础是,现实世界的图像噪声高度取决于信号依赖性,并且在现实世界中的嘈杂图像中的异质噪声可以由不同的Deoisiser分别处理。特别是,我们将受过良好训练的CBDNET,NBNET,HINET,UFORFORMER和GMSNET进入Denoiser池,并采用U-NET来预测Pixel的加权图以融合这些DeOisiser。引入了贝叶斯深度学习策略,而不是仅仅学习像素的加权地图,而是为了预测加权不确定性和加权图,可以通过该策略来建模预测差异,以改善现实世界中的嘈杂图像的鲁棒性。广泛的实验表明,可以通过融合现有的DINOISER而不是训练一个以昂贵的成本来训练一个大的Denoiser来更好地消除现实世界的噪音。在DND数据集上,我们的BDE实现了 +0.28〜dB PSNR的增益,而不是最先进的denoising方法。此外,我们注意到,在应用于现实世界嘈杂的图像时,基于不同高斯噪声水平的BDE Denoiser优于最先进的CBDNET。此外,我们的BDE可以扩展到其他图像恢复任务,并在基准数据集上获得 +0.30dB, +0.18dB和 +0.12dB PSNR的收益,以分别用于图像去除图像,图像降低和单个图像超级分辨率。
translated by 谷歌翻译
基于深度学习(DL)的高光谱图像(HSIS)去噪方法直接学习观察到的嘈杂图像和底层清洁图像之间的非线性映射。他们通常不考虑HSIS的物理特征,因此使他们缺乏了解他们的去噪机制的关键。为了解决这个问题,我们为HSI去噪提出了一种新颖的模型指导可解释网络。具体而言,完全考虑HSI的空间冗余,光谱低秩和光谱空间特性,我们首先建立基于子空间的多维稀疏模型。该模型首先将观察到的HSIS投入到低维正交子空间,然后表示具有多维字典的投影图像。之后,该模型展开到名为SMDS-Net的端到端网络中,其基本模块与模型的去噪程序无缝连接。这使得SMDS-Net传达清晰的物理意义,即学习HSIS的低级别和稀疏性。最后,通过端到端培训获得包括词典和阈值处理的所有关键变量。广泛的实验和综合分析证实了我们对最先进的HSI去噪方法的方法的去噪能力和可解释性。
translated by 谷歌翻译
图像恢复仍然是图像处理中有挑战性的任务。许多方法解决这个问题,通常通过最小化非平滑惩罚的共轨似然函数来解决。虽然解决方案很容易以理论保证来解释,但其估计依赖于可能需要时间的优化过程。考虑到图像分类和分割深度学习的研究努力,这类方法提供了一个严重的替代方案来执行图像恢复,但要挑战解决逆问题。在这项工作中,我们设计了一个名为Deeppdnet的深网络,从原始双近迭代构建,与之前的分析有关的标准惩罚可能性,允许我们利用两个世界。我们用固定图层为深度网络进行重构Condat-Vu原始 - 双混梯度(PDHG)算法的特定实例。学习的参数均为PDHG算法阶梯大小和惩罚中涉及的分析线性运算符(包括正则化参数)。允许这些参数从层变为另一个参数。提出了两种不同的学习策略:提出了“全学习”和“部分学习”,第一个是数值最有效的,而第二个是依赖于标准约束确保标准PDHG迭代中的收敛。此外,研究了全局和局部稀疏分析,以寻求更好的特征表示。我们将所提出的方法应用于MNIST和BSD68数据集上的图像恢复以及BSD100和SET14数据集的单个图像超分辨率。广泛的结果表明,建议的DeepPDNET在MNIST和更复杂的BSD68,BSD100和SET14数据集中展示了卓越的性能,用于图像恢复和单图像超分辨率任务。
translated by 谷歌翻译
派生是一个重要而基本的计算机视觉任务,旨在消除在下雨天捕获的图像或视频中的雨条纹和累积。现有的派威方法通常会使雨水模型的启发式假设,这迫使它们采用复杂的优化或迭代细化以获得高回收质量。然而,这导致耗时的方法,并影响解决从假设偏离的雨水模式的有效性。在本文中,我们通过在没有复杂的雨水模型假设的情况下,通过在没有复杂的雨水模型假设的情况下制定污染作为预测滤波问题的简单而有效的污染方法。具体地,我们识别通过深网络自适应地预测适当的核的空间变型预测滤波(SPFILT以过滤不同的各个像素。由于滤波可以通过加速卷积来实现,因此我们的方法可以显着效率。我们进一步提出了eFderain +,其中包含三个主要贡献来解决残留的雨迹,多尺度和多样化的雨水模式而不会损害效率。首先,我们提出了不确定感知的级联预测滤波(UC-PFILT),其可以通过预测的内核来识别重建清洁像素的困难,并有效地移除残留的雨水迹线。其次,我们设计重量共享多尺度扩张过滤(WS-MS-DFILT),以处理多尺度雨条纹,而不会损害效率。第三,消除各种雨水模式的差距,我们提出了一种新颖的数据增强方法(即Rainmix)来培养我们的深层模型。通过对不同变体的复杂分析的所有贡献相结合,我们的最终方法在恢复质量和速度方面优于四个单像辐照数据集和一个视频派威数据集的基线方法。
translated by 谷歌翻译
本文解决了单幅图像下雨的问题,即从一张多雨工件遮挡的单个图像中恢复清洁和无雨背景场景的任务。虽然最近的进步采用现实世界的延期数据来克服对雨水清洁图像的需要,但它们仅限于充分利用时间流逝数据。主要原因是,在网络架构方面,由于缺乏内存组件,它们无法在训练期间在训练期间捕获长期雨条纹信息。为了解决这个问题,我们提出了一种基于内存网络的新颖网络架构,该内存网络明确有助于在时间流逝数据中捕获长期雨条纹信息。我们的网络包括编码器 - 解码器网络和存储器网络。从编码器中提取的功能被读取并更新在包含几个存储器项中以存储雨条目感知功能表示的几个存储器项。利用读/更新操作,存储器网络根据查询检索相关的存储器项,使得存储器项能够表示在时间流逝数据中包括的各种雨条纹。为了提高内存特征的辨别力,我们还通过擦除背景信息,提出了一种用于仅捕获存储网络中的雨条信息的新型背景选择性美白(BSW)损耗。标准基准测试的实验结果证明了我们方法的有效性和优越性。
translated by 谷歌翻译
图像增强方法通常假定噪声是无关的,并且将降解模型近似为零均值的加性高斯。但是,这种假设不适合生物医学成像系统,在生物医学成像系统中,基于传感器的噪声源与信号强度成正比,并且噪声更好地表示为泊松过程。在这项工作中,我们探讨了一种基于词典学习的方法,并提出了一种新颖的自我监督学习方法,用于单像denoising,其中噪声近似为泊松过程,不需要干净的地面真实数据。具体而言,我们近似于通过反复的神经网络进行图像降级的传统迭代优化算法,该神经网络可实现相对于网络的权重的稀疏性。由于稀疏表示形式基于基础图像,因此它能够抑制图像贴片中的虚假组件(噪声),从而引入隐式正则化,以通过网络结构来降级任务。在两个生物成像数据集上的实验表明,我们的方法在PSNR和SSIM方面优于最先进的方法。我们的定性结果表明,除了在标准定量指标上进行更高的性能外,我们还能够比其他比较方法恢复更多的细节。我们的代码可在https://github.com/tacalvin/poisson2sparse上公开提供。
translated by 谷歌翻译
在各种图像处理和计算机视觉任务中经常遇到颜色图像Denoising。一种传统的策略是将RGB图像转换为较小相关的颜色空间,并分别将新空间的每个通道定义。但是,这种策略无法完全利用渠道之间的相关信息,并且不足以获得令人满意的结果。为了解决这个问题,本文提出了一个新的多通道优化模型,用于在核定标准下减去Frobenius规范最小化框架下的颜色图像Deno。具体而言,基于块匹配,将颜色图像分解为重叠的RGB补丁。对于每个补丁,我们堆叠其相似的邻居以形成相应的补丁矩阵。提出的模型是在补丁矩阵上执行的,以恢复其无噪声版本。在恢复过程中,a)引入权重矩阵以充分利用通道之间的噪声差; b)单数值是自适应缩小的,而无需分配权重。有了他们,提议的模型可以在保持简单的同时取得有希望的结果。为了解决提出的模型,基于乘数框架的交替方向方法构建了准确有效的算法。每个更新步骤的解决方案可以在封闭式中分析表达。严格的理论分析证明了所提出的算法产生的解决方案序列会收敛到其各自的固定点。合成和真实噪声数据集的实验结果证明了所提出的模型优于最先进的模型。
translated by 谷歌翻译
As a common weather, rain streaks adversely degrade the image quality. Hence, removing rains from an image has become an important issue in the field. To handle such an ill-posed single image deraining task, in this paper, we specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet), which embeds the intrinsic priors of rain streaks and has clear interpretability. In specific, we first establish a RCD model for representing rain streaks and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. By unfolding it, we then build the RCDNet in which every network module has clear physical meanings and corresponds to each operation involved in the algorithm. This good interpretability greatly facilitates an easy visualization and analysis on what happens inside the network and why it works well in inference process. Moreover, taking into account the domain gap issue in real scenarios, we further design a novel dynamic RCDNet, where the rain kernels can be dynamically inferred corresponding to input rainy images and then help shrink the space for rain layer estimation with few rain maps so as to ensure a fine generalization performance in the inconsistent scenarios of rain types between training and testing data. By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to better deraining performance. Comprehensive experiments substantiate the superiority of our method, especially on its well generality to diverse testing scenarios and good interpretability for all its modules. Code is available in \emph{\url{https://github.com/hongwang01/DRCDNet}}.
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
在计算断层摄影(CT)成像过程中,患者内的金属植入物总是造成有害伪影,这对重建的CT图像的视觉质量产生了负面影响,并且对随后的临床诊断产生负面影响。对于金属伪影减少(MAR)任务,基于深度学习的方法取得了有希望的表现。然而,大多数主要共享两个主要常见限制:1)CT物理成像几何约束是完全融入深网络结构中的; 2)整个框架对特定MAR任务具有薄弱的可解释性;因此,难以评估每个网络模块的作用。为了减轻这些问题,在本文中,我们构建了一种新的可解释的双域网络,称为Indudonet +,CT成像过程被精细地嵌入到其中。具体地说,我们推出了一个联合空间和氡域重建模型,并提出了一种仅具有简单操作员的优化算法来解决它。通过将所提出的算法中涉及的迭代步骤展开到相应的网络模块中,我们可以轻松地构建Indudonet +,以明确的解释性。此外,我们分析了不同组织之间的CT值,并将现有的观察合并到Endudonet +的现有网络中,这显着提高了其泛化性能。综合数据和临床数据的综合实验证实了所提出的方法的优越性以及超出当前最先进(SOTA)MAR方法的卓越概括性性能。代码可用于\ url {https://github.com/hongwang01/indududonet_plus}。
translated by 谷歌翻译
图像去噪是许多领域下游任务的先决条件。低剂量和光子计数计算断层扫描(CT)去噪可以在最小化辐射剂量下优化诊断性能。监督深层去噪方法是流行的,但需要成对的清洁或嘈杂的样本通常在实践中不可用。受独立噪声假设的限制,电流无监督的去噪方法不能处理与CT图像中的相关噪声。在这里,我们提出了一种基于类似的类似性的无人监督的无监督的深度去噪方法,称为Coxing2Sim,以非局部和非线性方式起作用,不仅抑制独立而且还具有相关的噪音。从理论上讲,噪声2SIM在温和条件下渐近相当于监督学习方法。通过实验,Nosie2SIM从嘈杂的低剂量CT和光子计数CT图像中的内在特征,从视觉上,定量和统计上有效地或甚至优于实际数据集的监督学习方法。 Coke2Sim是一般无监督的去噪方法,在不同的应用中具有很大的潜力。
translated by 谷歌翻译
在弱光环境下,手持式摄影在长时间的曝光设置下遭受了严重的相机震动。尽管现有的Deblurry算法在暴露良好的模糊图像上表现出了令人鼓舞的性能,但它们仍然无法应对低光快照。在实用的低光脱毛中,复杂的噪声和饱和区是两个主导挑战。在这项工作中,我们提出了一种称为图像的新型非盲脱毛方法,并具有特征空间Wiener Deonervolution网络(Infwide),以系统地解决这些问题。在算法设计方面,Infwide提出了一个两分支的架构,该体系结构明确消除了噪声并幻觉,使图像空间中的饱和区域抑制了特征空间中的响起文物,并将两个互补输出与一个微妙的多尺度融合网络集成在一起高质量的夜间照片浮雕。为了进行有效的网络培训,我们设计了一组损失功能,集成了前向成像模型和向后重建,以形成近环的正则化,以确保深神经网络的良好收敛性。此外,为了优化Infwide在实际弱光条件下的适用性,采用基于物理过程的低光噪声模型来合成现实的嘈杂夜间照片进行模型训练。利用传统的Wiener Deonervolution算法的身体驱动的特征并引起了深层神经网络的表示能力,Infwide可以恢复细节,同时抑制在脱毛期间的不愉快的人工制品。关于合成数据和实际数据的广泛实验证明了所提出的方法的出色性能。
translated by 谷歌翻译
多尺度体系结构和注意力模块在许多基于深度学习的图像脱落方法中都显示出有效性。但是,将这两个组件手动设计和集成到神经网络中需要大量的劳动力和广泛的专业知识。在本文中,高性能多尺度的细心神经体系结构搜索(MANAS)框架是技术开发的。所提出的方法为图像脱落任务的最爱的多个灵活模块制定了新的多尺度注意搜索空间。在搜索空间下,建立了多尺度的细胞,该单元被进一步用于构建功能强大的图像脱落网络。通过基于梯度的搜索算法自动搜索脱毛网络的内部多尺度架构,该算法在某种程度上避免了手动设计的艰巨过程。此外,为了获得强大的图像脱落模型,还提出了一种实用有效的多到一对训练策略,以允许去磨损网络从具有相同背景场景的多个雨天图像中获取足够的背景信息,与此同时,共同优化了包括外部损失,内部损失,建筑正则损失和模型复杂性损失在内的多个损失功能,以实现可靠的损伤性能和可控的模型复杂性。对合成和逼真的雨图像以及下游视觉应用(即反对检测和分割)的广泛实验结果始终证明了我们提出的方法的优越性。
translated by 谷歌翻译