Recently, online social media has become a primary source for new information and misinformation or rumours. In the absence of an automatic rumour detection system the propagation of rumours has increased manifold leading to serious societal damages. In this work, we propose a novel method for building automatic rumour detection system by focusing on oversampling to alleviating the fundamental challenges of class imbalance in rumour detection task. Our oversampling method relies on contextualised data augmentation to generate synthetic samples for underrepresented classes in the dataset. The key idea exploits selection of tweets in a thread for augmentation which can be achieved by introducing a non-random selection criteria to focus the augmentation process on relevant tweets. Furthermore, we propose two graph neural networks(GNN) to model non-linear conversations on a thread. To enhance the tweet representations in our method we employed a custom feature selection technique based on state-of-the-art BERTweet model. Experiments of three publicly available datasets confirm that 1) our GNN models outperform the the current state-of-the-art classifiers by more than 20%(F1-score); 2) our oversampling technique increases the model performance by more than 9%;(F1-score) 3) focusing on relevant tweets for data augmentation via non-random selection criteria can further improve the results; and 4) our method has superior capabilities to detect rumours at very early stage.
translated by 谷歌翻译
谣言在社交媒体的时代猖獗。谈话结构提供有价值的线索,以区分真实和假声明。然而,现有的谣言检测方法限制为用户响应的严格关系或过度简化对话结构。在这项研究中,为了减轻不相关的帖子施加的负面影响,基本上加强了用户意见的相互作用,首先将谈话线作为无向相互作用图。然后,我们提出了一种用于谣言分类的主导分层图注意网络,其提高了考虑整个社会环境的响应帖子的表示学习,并参加可以在语义上推断目标索赔的帖子。三个Twitter数据集的广泛实验表明,我们的谣言检测方法比最先进的方法实现了更好的性能,并且展示了在早期阶段检测谣言的优异容量。
translated by 谷歌翻译
讽刺可以被定义为说或写讽刺与一个人真正想表达的相反,通常是为了侮辱,刺激或娱乐某人。由于文本数据中讽刺性的性质晦涩难懂,因此检测到情感分析研究社区的困难和非常感兴趣。尽管讽刺检测的研究跨越了十多年,但最近已经取得了一些重大进步,包括在多模式环境中采用了无监督的预训练的预训练的变压器,并整合了环境以识别讽刺。在这项研究中,我们旨在简要概述英语计算讽刺研究的最新进步和趋势。我们描述了与讽刺有关的相关数据集,方法,趋势,问题,挑战和任务,这些数据集,趋势,问题,挑战和任务是无法检测到的。我们的研究提供了讽刺数据集,讽刺特征及其提取方法以及各种方法的性能分析,这些表可以帮助相关领域的研究人员了解当前的讽刺检测中最新实践。
translated by 谷歌翻译
假新闻是制作作为真实的信息,有意欺骗读者。最近,依靠社交媒体的人民币为新闻消费的人数显着增加。由于这种快速增加,错误信息的不利影响会影响更广泛的受众。由于人们对这种欺骗性的假新闻的脆弱性增加,在早期阶段检测错误信息的可靠技术是必要的。因此,作者提出了一种基于图形的基于图形的框架社会图,其具有多头关注和发布者信息和新闻统计网络(SOMPS-Net),包括两个组件 - 社交交互图(SIG)和发布者和新闻统计信息(PNS)。假设模型在HealthStory DataSet上进行了实验,并在包括癌症,阿尔茨海默,妇产科和营养等各种医疗主题上推广。 Somps-Net明显优于其他基于现实的图表的模型,在HealthStory上实验17.1%。此外,早期检测的实验表明,Somps-Net预测的假新闻文章在其广播仅需8小时内为79%确定。因此,这项工作的贡献奠定了在早期阶段捕获多种医疗主题的假健康新闻的基础。
translated by 谷歌翻译
检测假新闻对于确保信息的真实性和维持新闻生态系统的可靠性至关重要。最近,由于最近的社交媒体和伪造的内容生成技术(例如Deep Fake)的扩散,假新闻内容的增加了。假新闻检测的大多数现有方式都集中在基于内容的方法上。但是,这些技术中的大多数无法处理生成模型生产的超现实合成媒体。我们最近的研究发现,真实和虚假新闻的传播特征是可以区分的,无论其方式如何。在这方面,我们已经根据社会环境调查了辅助信息,以检测假新闻。本文通过基于混合图神经网络的方法分析了假新闻检测的社会背景。该混合模型基于将图形神经网络集成到新闻内容上的新闻和BI定向编码器表示的传播中,以了解文本功能。因此,这种提出的方​​法可以学习内容以及上下文特征,因此能够在Politifact上以F1分别为0.91和0.93的基线模型和八西八角数据集的基线模型,分别超过了基线模型,分别在八西八学数据集中胜过0.93
translated by 谷歌翻译
Nowadays, fake news easily propagates through online social networks and becomes a grand threat to individuals and society. Assessing the authenticity of news is challenging due to its elaborately fabricated contents, making it difficult to obtain large-scale annotations for fake news data. Due to such data scarcity issues, detecting fake news tends to fail and overfit in the supervised setting. Recently, graph neural networks (GNNs) have been adopted to leverage the richer relational information among both labeled and unlabeled instances. Despite their promising results, they are inherently focused on pairwise relations between news, which can limit the expressive power for capturing fake news that spreads in a group-level. For example, detecting fake news can be more effective when we better understand relations between news pieces shared among susceptible users. To address those issues, we propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism. Experiments based on two benchmark datasets show that our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
translated by 谷歌翻译
预期观众对某些文本的反应是社会的几个方面不可或缺的,包括政治,研究和商业行业。情感分析(SA)是一种有用的自然语言处理(NLP)技术,它利用词汇/统计和深度学习方法来确定不同尺寸的文本是否表现出正面,负面或中立的情绪。但是,目前缺乏工具来分析独立文本的组并从整体中提取主要情感。因此,当前的论文提出了一种新型算法,称为多层推文分析仪(MLTA),该算法使用多层网络(MLN)以图形方式对社交媒体文本进行了图形方式,以便更好地编码跨越独立的推文集的关系。与其他表示方法相比,图结构能够捕获复杂生态系统中有意义的关系。最先进的图形神经网络(GNN)用于从Tweet-MLN中提取信息,并根据提取的图形特征进行预测。结果表明,与标准的正面,负或中性相比,MLTA不仅可以从更大的可能情绪中预测,从而提供了更准确的情感,还允许对Twitter数据进行准确的组级预测。
translated by 谷歌翻译
社交媒体由于易于传播新信息而在公共领域迅速发展,这导致了谣言的流通。但是,从如此大量的信息中发现谣言正在成为越来越艰巨的挑战。以前的工作通常从传播信息中获得了宝贵的功能。应该注意的是,大多数方法仅针对传播结构,而忽略了谣言传播模式。这个有限的重点严重限制了传播数据的收集。为了解决这个问题,本研究的作者是促使探索谣言的区域化传播模式。具体而言,提出了一种新颖的区域增强的深图卷积网络(RDGCN),该网络(RDGCN)通过学习区域化的传播模式和火车来增强谣言的传播特征,从而通过无人看管的学习来学习传播模式。此外,源增强的残留图卷积层(SRGCL)旨在改善图形神经网络(GNN)的超平滑度,并增加了基于谣言检测方法的GNN的深度极限。 Twitter15和Twitter16上的实验表明,在谣言检测和早期谣言检测中,提出的模型的性能优于基线方法。
translated by 谷歌翻译
Users' involvement in creating and propagating news is a vital aspect of fake news detection in online social networks. Intuitively, credible users are more likely to share trustworthy news, while untrusted users have a higher probability of spreading untrustworthy news. In this paper, we construct a dual-layer graph (i.e., the news layer and the user layer) to extract multiple relations of news and users in social networks to derive rich information for detecting fake news. Based on the dual-layer graph, we propose a fake news detection model named Us-DeFake. It learns the propagation features of news in the news layer and the interaction features of users in the user layer. Through the inter-layer in the graph, Us-DeFake fuses the user signals that contain credibility information into the news features, to provide distinctive user-aware embeddings of news for fake news detection. The training process conducts on multiple dual-layer subgraphs obtained by a graph sampler to scale Us-DeFake in large scale social networks. Extensive experiments on real-world datasets illustrate the superiority of Us-DeFake which outperforms all baselines, and the users' credibility signals learned by interaction relation can notably improve the performance of our model.
translated by 谷歌翻译
Twitter机器人检测已成为打击错误信息,促进社交媒体节制并保持在线话语的完整性的越来越重要的任务。最先进的机器人检测方法通常利用Twitter网络的图形结构,在面对传统方法无法检测到的新型Twitter机器人时,它们表现出令人鼓舞的性能。但是,现有的Twitter机器人检测数据集很少是基于图形的,即使这些基于图形的数据集也遭受有限的数据集量表,不完整的图形结构以及低注释质量。实际上,缺乏解决这些问题的大规模基于图的Twitter机器人检测基准,严重阻碍了基于图形的机器人检测方法的开发和评估。在本文中,我们提出了Twibot-22,这是一个综合基于图的Twitter机器人检测基准,它显示了迄今为止最大的数据集,在Twitter网络上提供了多元化的实体和关系,并且与现有数据集相比具有更好的注释质量。此外,我们重新实施35代表性的Twitter机器人检测基线,并在包括Twibot-22在内的9个数据集上进行评估,以促进对模型性能和对研究进度的整体了解的公平比较。为了促进进一步的研究,我们将所有实施的代码和数据集巩固到Twibot-22评估框架中,研究人员可以在其中始终如一地评估新的模型和数据集。 Twibot-22 Twitter机器人检测基准和评估框架可在https://twibot22.github.io/上公开获得。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
Social networking sites, blogs, and online articles are instant sources of news for internet users globally. However, in the absence of strict regulations mandating the genuineness of every text on social media, it is probable that some of these texts are fake news or rumours. Their deceptive nature and ability to propagate instantly can have an adverse effect on society. This necessitates the need for more effective detection of fake news and rumours on the web. In this work, we annotate four fake news detection and rumour detection datasets with their emotion class labels using transfer learning. We show the correlation between the legitimacy of a text with its intrinsic emotion for fake news and rumour detection, and prove that even within the same emotion class, fake and real news are often represented differently, which can be used for improved feature extraction. Based on this, we propose a multi-task framework for fake news and rumour detection, predicting both the emotion and legitimacy of the text. We train a variety of deep learning models in single-task and multi-task settings for a more comprehensive comparison. We further analyze the performance of our multi-task approach for fake news detection in cross-domain settings to verify its efficacy for better generalization across datasets, and to verify that emotions act as a domain-independent feature. Experimental results verify that our multi-task models consistently outperform their single-task counterparts in terms of accuracy, precision, recall, and F1 score, both for in-domain and cross-domain settings. We also qualitatively analyze the difference in performance in single-task and multi-task learning models.
translated by 谷歌翻译
The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction.
translated by 谷歌翻译
社交媒体网络已成为人们生活的重要方面,它是其思想,观点和情感的平台。因此,自动化情绪分析(SA)对于以其他信息来源无法识别人们的感受至关重要。对这些感觉的分析揭示了各种应用,包括品牌评估,YouTube电影评论和医疗保健应用。随着社交媒体的不断发展,人们以不同形式发布大量信息,包括文本,照片,音频和视频。因此,传统的SA算法已变得有限,因为它们不考虑其他方式的表现力。通过包括来自各种物质来源的此类特征,这些多模式数据流提供了新的机会,以优化基于文本的SA之外的预期结果。我们的研究重点是多模式SA的最前沿领域,该领域研究了社交媒体网络上发布的视觉和文本数据。许多人更有可能利用这些信息在这些平台上表达自己。为了作为这个快速增长的领域的学者资源,我们介绍了文本和视觉SA的全面概述,包括数据预处理,功能提取技术,情感基准数据集以及适合每个字段的多重分类方法的疗效。我们还简要介绍了最常用的数据融合策略,并提供了有关Visual Textual SA的现有研究的摘要。最后,我们重点介绍了最重大的挑战,并调查了一些重要的情感应用程序。
translated by 谷歌翻译
Fake news detection has become a research area that goes way beyond a purely academic interest as it has direct implications on our society as a whole. Recent advances have primarily focused on textbased approaches. However, it has become clear that to be effective one needs to incorporate additional, contextual information such as spreading behaviour of news articles and user interaction patterns on social media. We propose to construct heterogeneous social context graphs around news articles and reformulate the problem as a graph classification task. Exploring the incorporation of different types of information (to get an idea as to what level of social context is most effective) and using different graph neural network architectures indicates that this approach is highly effective with robust results on a common benchmark dataset.
translated by 谷歌翻译
随着越来越受欢迎和易于访问互联网,在线谣言的问题正在升级。人们依靠社交媒体,易于获取信息,但将牺牲猎物陷入错误信息。在线帖子缺乏可信度评估技术,以便在到达时立即识别谣言。现有研究制定了通过开发机器学习和深度学习算法来打击在线谣言的若干机制。到目前为止的文献为凭借巨大的训练数据集提供了谣言分类的监督框架。然而,在监督学习的在线情景中,动态谣言识别变得困难。在线谣言的早期检测是一个具有挑战性的任务,与他们有关的研究相对较少。只要在线出现,就需要小时才能识别谣言。这项工作提出了一种简洁的谣言检测框架,依赖于在线帖子的内容和使用最先进的聚类技术。拟议的体系结构优于几种现有基线,并且比几种监督技术更好。提出的方法,轻巧,简单,坚固,提供了作为在线谣言识别的工具采用的适用性。
translated by 谷歌翻译
假新闻,虚假或误导性信息作为新闻,对社会的许多方面产生了重大影响,例如在政治或医疗域名。由于假新闻的欺骗性,仅将自然语言处理(NLP)技术应用于新闻内容不足。多级社会上下文信息(新闻出版商和社交媒体的参与者)和用户参与的时间信息是假新闻检测中的重要信息。然而,正确使用此信息,介绍了三个慢性困难:1)多级社会上下文信息很难在没有信息丢失的情况下使用,2)难以使用时间信息以及多级社会上下文信息,3 )具有多级社会背景和时间信息的新闻表示难以以端到端的方式学习。为了克服所有三个困难,我们提出了一种新颖的假新闻检测框架,杂扫描。我们使用元路径在不损失的情况下提取有意义的多级社会上下文信息。 COMA-PATO,建议连接两个节点类型的复合关系,以捕获异构图中的语义。然后,我们提出了元路径实例编码和聚合方法,以捕获用户参与的时间信息,并生成新闻代表端到端。根据我们的实验,杂扫不断的性能改善了最先进的假新闻检测方法。
translated by 谷歌翻译
推文是在线社交媒体中最简洁的交流形式,其中一条推文有可能制作或打破对话的话语。在线仇恨言论比以往任何时候都更容易访问,并且扼杀其传播对于社交媒体公司和用户进行友好沟通至关重要。除了最近的一条推文分类,无论导致这一点的推文线程/上下文如何,大多数研究都集中在对单个推文进行分类。遏制仇恨言论的经典方法之一是在仇恨言论邮寄后采用反应性策略。事实上的事实策略导致忽略了微妙的帖子,这些帖子并未显示出自己激发仇恨言论的潜力,但可能会在随后在帖子的答复中随后的讨论中进行预言。在本文中,我们提出了Dragnet ++,该论文旨在预测推文可以通过其未来的回复链引入的仇恨强度。它使用推文线程的语义和传播结构来最大化导致每个后续推文的仇恨强度的上下文信息。我们探索了三个公开可用的Twitter数据集 - 反种族主义包含有关社交媒体讨论在美国政治和COVID-19的背景期间关于种族主义言论的回答推文;反社会介绍了一个关于反社会行为的19000万推文的数据集;和反亚洲介绍了基于19日大流行期间的反亚洲行为的Twitter数据集。所有策划的数据集都包含Tweet线程的结构图信息。我们表明,Dragnet ++的表现大大优于所有最先进的基线。它比人相关系数的最佳基线降低了11 \%的利润率,而反种族主义数据集则在RMSE上降低了25 \%,而其他两个数据集则具有相似的性能。
translated by 谷歌翻译
仇恨言论是一种在线骚扰的形式,涉及使用滥用语言,并且在社交媒体帖子中通常可以看到。这种骚扰主要集中在诸如宗教,性别,种族等的特定群体特征上,如今它既有社会和经济后果。文本文章中对滥用语言的自动检测一直是一项艰巨的任务,但最近它从科学界获得了很多兴趣。本文解决了在社交媒体中辨别仇恨内容的重要问题。我们在这项工作中提出的模型是基于LSTM神经网络体系结构的现有方法的扩展,我们在短文中适当地增强和微调以检测某些形式的仇恨语言,例如种族主义或性别歧视。最重要的增强是转换为由复发性神经网络(RNN)分类器组成的两阶段方案。将第一阶段的所有一Vs式分类器(OVR)分类器的输出组合在一起,并用于训练第二阶段分类器,最终决定了骚扰的类型。我们的研究包括对在16K推文的公共语料库中评估的第二阶段提出的几种替代方法的性能比较,然后对另一个数据集进行了概括研究。报道的结果表明,与当前的最新技术相比,在仇恨言论检测任务中,所提出的方案的分类质量出色。
translated by 谷歌翻译
为了解决疫苗犹豫不决,这会损害COVID-19疫苗接种运动的努力,必须了解公共疫苗接种态度并及时掌握其变化。尽管具有可靠性和可信赖性,但基于调查的传统态度收集是耗时且昂贵的,无法遵循疫苗接种态度的快速发展。我们利用社交媒体上的文本帖子通过提出深入学习框架来实时提取和跟踪用户的疫苗接种立场。为了解决与疫苗相关话语中常用的讽刺和讽刺性的语言特征的影响,我们将用户社交网络邻居的最新帖子集成到框架中,以帮助检测用户的真实态度。根据我们从Twitter的注释数据集,与最新的仅文本模型相比,从我们框架实例化的模型可以提高态度提取的性能高达23%。使用此框架,我们成功地验证了使用社交媒体跟踪现实生活中疫苗接种态度的演变的可行性。我们进一步显示了对我们的框架的一种实际用途,它可以通过从社交媒体中感知到的信息来预测用户疫苗犹豫的变化的可能性。
translated by 谷歌翻译