由于存在对抗性攻击,因此在安全至关重要系统中使用神经网络需要安全,可靠的模型。了解任何输入X的最小对抗扰动,或等效地知道X与分类边界的距离,可以评估分类鲁棒性,从而提供可认证的预测。不幸的是,计算此类距离的最新技术在计算上很昂贵,因此不适合在线应用程序。这项工作提出了一个新型的分类器家族,即签名的距离分类器(SDC),从理论的角度来看,它直接输出X与分类边界的确切距离,而不是概率分数(例如SoftMax)。 SDC代表一个强大的设计分类器家庭。为了实际解决SDC的理论要求,提出了一种名为Unitary级别神经网络的新型网络体系结构。实验结果表明,所提出的体系结构近似于签名的距离分类器,因此允许以单个推断为代价对X进行在线认证分类。
translated by 谷歌翻译
尽管深度神经网络(DNN)在感知和控制任务中表现出令人难以置信的性能,但几个值得信赖的问题仍然是开放的。其中一个最讨论的主题是存在对抗扰动的存在,它在能够量化给定输入的稳健性的可提供技术上开辟了一个有趣的研究线。在这方面,来自分类边界的输入的欧几里德距离表示良好被证明的鲁棒性评估,作为最小的经济适用的逆势扰动。不幸的是,由于NN的非凸性质,计算如此距离非常复杂。尽管已经提出了几种方法来解决这个问题,但据我们所知,没有提出可证明的结果来估计和绑定承诺的错误。本文通过提出两个轻量级策略来寻找最小的对抗扰动来解决这个问题。不同于现有技术,所提出的方法允许与理论上的近似距离的误差估计理论配制。最后,据报道,据报道了大量实验来评估算法的性能并支持理论发现。所获得的结果表明,该策略近似于靠近分类边界的样品的理论距离,导致可提供对任何对抗攻击的鲁棒性保障。
translated by 谷歌翻译
对于深层网络而言,这是一个非常理想的属性,可与小型输入更改保持强大。实现此属性的一种流行方法是设计具有小Lipschitz常数的网络。在这项工作中,我们提出了一种用于构建具有许多理想属性的Lipschitz网络的新技术:它可以应用于任何线性网络层(完全连接或卷积),它在Lipschitz常数上提供了正式的保证,它是易于实施和运行效率,可以与任何培训目标和优化方法结合使用。实际上,我们的技术是文献中第一个同时实现所有这些属性的技术。我们的主要贡献是基于重新的重量矩阵参数化,该参数保证每个网络层最多具有LIPSCHITZ常数,并且导致学习的权重矩阵接近正交。因此,我们称这种层几乎是正交的Lipschitz(AOL)。在图像分类的背景下,实验和消融研究具有认证的鲁棒精度证实,AOL层获得与大多数现有方法相当的结果。但是,它们更容易实现,并且更广泛地适用,因为它们不需要计算昂贵的矩阵正交化或反转步骤作为网络体系结构的一部分。我们在https://github.com/berndprach/aol上提供代码。
translated by 谷歌翻译
我们在监督分类的背景下研究深网的过剩能力。也就是说,给定对基本假设类别的能力度量(在我们的情况下,是经验性的Rademacher的复杂性),我们(先验)可以限制该类别的数量,同时在与无约束性方面保持经验误差的同时保留经验误差?为了评估现代体系结构(例如残留网络)的过剩能力,我们扩展并统一了先前的Rademacher复杂性界限,以适应功能组成和添加以及卷积的结构。我们边界中的容量驱动项是层的Lipschitz常数和卷积权重初始化的(2,1)组的范围距离。在不同任务难度的基准数据集上进行的实验表明,(1)每个任务的容量大量超过容量,并且(2)可以将容量保持在整个任务的惊人相似水平。总体而言,这表明了重量规范的可压缩性概念,这是通过重量修剪正交的经典压缩概念。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
由于机器学习(ML)系统变得普遍存在,因此保护其安全性至关重要。然而,最近已经证明,动机的对手能够通过使用语义转换扰乱测试数据来误导ML系统。虽然存在丰富的研究机构,但为ML模型提供了可提供的稳健性保证,以防止$ \ ell_p $ norm界限对抗对抗扰动,抵御语义扰动的保证仍然很广泛。在本文中,我们提供了TSS - 一种统一的框架,用于针对一般对抗性语义转换的鲁棒性认证。首先,根据每个转换的性质,我们将常见的变换划分为两类,即可解决的(例如,高斯模糊)和差异可解的(例如,旋转)变换。对于前者,我们提出了特定于转型的随机平滑策略并获得强大的稳健性认证。后者类别涵盖涉及插值错误的变换,我们提出了一种基于分层采样的新方法,以证明稳健性。我们的框架TSS利用这些认证策略并结合了一致性增强的培训,以提供严谨的鲁棒性认证。我们对十种挑战性语义转化进行了广泛的实验,并表明TSS显着优于现有技术。此外,据我们所知,TSS是第一种在大规模想象数据集上实现非竞争认证稳健性的方法。例如,我们的框架在ImageNet上实现了旋转攻击的30.4%认证的稳健准确性(在$ \ PM 30 ^ \ CIC $)。此外,要考虑更广泛的转换,我们展示了TSS对自适应攻击和不可预见的图像损坏,例如CIFAR-10-C和Imagenet-C。
translated by 谷歌翻译
隐式神经网络是一般的学习模型,可以用隐式代数方程替换传统的馈电模型中的层。与传统学习模型相比,隐式网络提供竞争性能和降低的内存消耗。然而,它们可以对输入对抗性扰动保持脆弱。本文提出了隐式神经网络的稳健性验证的理论和计算框架;我们的框架混合在一起混合单调系统理论和收缩理论。首先,给定隐式神经网络,我们介绍了一个相关的嵌入式网络,并显示,给定$ \ ell_ infty $ -norm框限制对输入,嵌入式网络提供$ \ ell_ \ idty $ -norm box超值给定网络的输出。其次,使用$ \ ell _ {\ infty} $ - 矩阵措施,我们为原始和嵌入式系统的良好提出了足够的条件,并设计了一种迭代算法来计算$ \ e _ {\ infty} $ - norm box鲁棒性利润率和可达性和分类问题。第三,独立价值,我们提出了一种新颖的相对分类器变量,导致认证问题的经过认证的对抗性鲁棒性更严格的界限。最后,我们对在Mnist DataSet上培训的非欧几里德单调运营商网络(Nemon)上进行数值模拟。在这些模拟中,我们比较了我们的混合单调对收缩方法的准确性和运行时间与文献中的现有鲁棒性验证方法,以估算认证的对抗性鲁棒性。
translated by 谷歌翻译
过度参数化的神经网络在复杂数据上具有很大的代表能力,更重要的是产生足够平滑的输出,这对于它们的概括和稳健性至关重要。大多数现有函数近似理论表明,使用足够多的参数,神经网络可以很好地近似于功能值的某些类别的函数。然而,神经网络本身可能是高度平滑的。为了弥合这一差距,我们以卷积残留网络(Rescresnets)为例,并证明大型响应不仅可以在功能值方面近似目标函数,而且还可以表现出足够的一阶平滑度。此外,我们将理论扩展到在低维歧管上支持的近似功能。我们的理论部分证明了在实践中使用深层网络的好处。提供了关于对抗性鲁棒图像分类的数值实验,以支持我们的理论。
translated by 谷歌翻译
在深度学习中的优化分析是连续的,专注于(变体)梯度流动,或离散,直接处理(变体)梯度下降。梯度流程可符合理论分析,但是风格化并忽略计算效率。它代表梯度下降的程度是深度学习理论的一个开放问题。目前的论文研究了这个问题。将梯度下降视为梯度流量初始值问题的近似数值问题,发现近似程度取决于梯度流动轨迹周围的曲率。然后,我们表明,在具有均匀激活的深度神经网络中,梯度流动轨迹享有有利的曲率,表明它们通过梯度下降近似地近似。该发现允许我们将深度线性神经网络的梯度流分析转换为保证梯度下降,其几乎肯定会在随机初始化下有效地收敛到全局最小值。实验表明,在简单的深度神经网络中,具有传统步长的梯度下降确实接近梯度流。我们假设梯度流动理论将解开深入学习背后的奥秘。
translated by 谷歌翻译
随机平滑最近被出现为一种有效的工具,可以在尺度上进行深度神经网络分类器认证。随机平滑的所有现有技术都集中在各向同性$ \ ell_p $认证,这具有通过$ \ ell_p $ -norm半径在各向同性方法中可以轻松地进行证书的优势。然而,各向同性认证限制了可以通过输入到最坏情况对手的输入的区域,即,它不能推理其他“关闭”,潜在的大,恒定的预测安全区域。为了缓解这个问题,(i)我们在简化分析后理论上将各向同性随机平滑$ \ ell_1 $和$ \ ell_2 $证明延伸到其广泛的各向异性同行。此外,(ii)我们提出了评估指标,允许比较一般证书 - 如果它通过经过认证区域的卷定量每个证书的量化,证书优于另一个证书。我们介绍ACCER,是通过体积最大化获得给定测试集样本的各向异性证书的实际框架。我们的经验结果表明,ACCER在多个半径的CIFAR-10和ImageNet上实现最先进的$ \ ell_1 $和$ \ ell_2 $认证准确性,同时在体积方面认证大幅更大的地区,从而突出了益处远离各向同性分析。我们的代码可以在https://github.com/motasemalfarra/ancer中获得。
translated by 谷歌翻译
多项式网络(PNS)最近在面部和图像识别方面表现出了有希望的表现。但是,PNS的鲁棒性尚不清楚,因此获得证书对于使其在现实世界应用中的采用至关重要。基于分支和绑定(BAB)技术的Relu神经网络(NNS)上的现有验证算法不能微不足道地应用于PN验证。在这项工作中,我们设计了一种新的边界方法,该方法配备了BAB,用于全球融合保证,称为VPN。一个关键的见解是,我们获得的边界比间隔结合的传播基线更紧密。这可以通过MNIST,CIFAR10和STL10数据集的经验验证进行声音和完整的PN验证。我们认为我们的方法对NN验证具有自身的兴趣。
translated by 谷歌翻译
Deep nets generalize well despite having more parameters than the number of training samples. Recent works try to give an explanation using PAC-Bayes and Margin-based analyses, but do not as yet result in sample complexity bounds better than naive parameter counting. The current paper shows generalization bounds that're orders of magnitude better in practice. These rely upon new succinct reparametrizations of the trained net -a compression that is explicit and efficient. These yield generalization bounds via a simple compression-based framework introduced here. Our results also provide some theoretical justification for widespread empirical success in compressing deep nets.Analysis of correctness of our compression relies upon some newly identified "noise stability"properties of trained deep nets, which are also experimentally verified. The study of these properties and resulting generalization bounds are also extended to convolutional nets, which had eluded earlier attempts on proving generalization.
translated by 谷歌翻译
我们有助于更好地理解由具有Relu激活和给定架构的神经网络表示的功能。使用来自混合整数优化,多面体理论和热带几何的技术,我们为普遍近似定理提供了数学逆向,这表明单个隐藏层足以用于学习任务。特别是,我们调查完全可增值功能是否完全可以通过添加更多层(没有限制大小)来严格增加。由于它为神经假设类别代表的函数类提供给算法和统计方面,这个问题对算法和统计方面具有潜在的影响。然而,据我们所知,这个问题尚未在神经网络文学中调查。我们还在这些神经假设类别中代表功能所需的神经网络的大小上存在上限。
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
我们介绍了一类完全连接的神经网络,其激活功能而不是点,而是仅取决于其规范来缩回特征向量。我们称此类网络径向神经网络,扩展了先前在旋转模棱两可的网络上的工作,该网络认为将激活重新激活较少。我们证明了径向神经网络的通用近似定理,包括在更困难的宽度和无界域的情况下。我们的证明技术是新颖的,与偶然的情况不同。此外,径向神经网络在可训练参数的矢量空间上表现出丰富的基础对称性。分解这些对称性会导致实用的无损模型压缩算法。通过梯度下降对压缩模型的优化等效于整个模型的投影梯度下降。
translated by 谷歌翻译
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
translated by 谷歌翻译
Neural networks are known to be a class of highly expressive functions able to fit even random inputoutput mappings with 100% accuracy. In this work we present properties of neural networks that complement this aspect of expressivity. By using tools from Fourier analysis, we highlight a learning bias of deep networks towards low frequency functions -i.e. functions that vary globally without local fluctuations -which manifests itself as a frequency-dependent learning speed. Intuitively, this property is in line with the observation that over-parameterized networks prioritize learning simple patterns that generalize across data samples. We also investigate the role of the shape of the data manifold by presenting empirical and theoretical evidence that, somewhat counter-intuitively, learning higher frequencies gets easier with increasing manifold complexity.
translated by 谷歌翻译
经认证的稳健性是安全关键应用中的深度神经网络的理想性质,流行的训练算法可以通过计算其Lipschitz常数的全球界限来认证神经网络的鲁棒性。然而,这种界限往往松动:它倾向于过度规范神经网络并降低其自然精度。绑定的Lipschitz绑定可以在自然和认证的准确性之间提供更好的权衡,但通常很难根据网络的非凸起计算。在这项工作中,我们通过考虑激活函数(例如Relu)和权重矩阵之间的相互作用,提出了一种有效和培训的\ emph {本地} Lipschitz上限。具体地,当计算权重矩阵的诱发标准时,我们消除了相应的行和列,其中保证激活函数在每个给定数据点的邻域中是常数,它提供比全局Lipschitz常数的可怕更严格的绑定神经网络。我们的方法可用作插入式模块,以拧紧在许多可认证的训练算法中绑定的Lipschitz。此外,我们建议夹住激活功能(例如,Relu和Maxmin),具有可读的上限阈值和稀疏性损失,以帮助网络实现甚至更严格的本地嘴唇尖端。在实验上,我们表明我们的方法始终如一地优于Mnist,CiFar-10和Tinyimagenet数据集的清洁和认证准确性,具有各种网络架构的清洁和认证的准确性。
translated by 谷歌翻译
在本文中,我们启动了对分类中低维对逆动力(LDAP)现象的严格研究。与经典设置不同,这些扰动仅限于尺寸$ k $的子空间,该子空间比功能空间的尺寸$ d $小得多。 $ k = 1 $的情况对应于所谓的通用对抗扰动(UAPS; Moosavi-Dezfooli等,2017)。首先,我们考虑在通用规律条件(包括RELU网络)下的二进制分类器,并根据任何子空间的愚蠢率计算分析下限。这些界限明确强调了愚蠢率对模型的点缘的依赖性(即,在测试点的输出与其梯度的$ L_2 $ norm的比率),以及给定子空间与该梯度的对齐模型W.R.T.的梯度输入。我们的结果为启发式方法的最新成功提供了有效产生低维对对抗性扰动的严格解释。最后,我们表明,如果决策区域紧凑,那么它将接受通用的对抗性扰动,其$ l_2 $ norm,比典型的$ \ sqrt {d} $倍乘以数据点的典型$ l_2 $ norm。我们的理论结果通过对合成和真实数据的实验证实。
translated by 谷歌翻译