对比度学习依赖于假设正对包含相关视图,例如,视频的图像或视频的共同发生的多峰信号,其共享关于实例的某些基础信息。但如果违反了这个假设怎么办?该文献表明,对比学学习在存在嘈杂的视图中产生次优表示,例如,没有明显共享信息的假正对。在这项工作中,我们提出了一种新的对比损失函数,这是对嘈杂的观点的强大。我们通过显示嘈杂二进制分类的强大对称损失的连接提供严格的理论理由,并通过基于Wassersein距离测量来建立新的对比界限进行新的对比。拟议的损失是完全的方式无话无双,并且对Innoconce损失的更换简单的替代品,这使得适用于现有的对比框架。我们表明,我们的方法提供了在展示各种现实世界噪声模式的图像,视频和图形对比学习基准上的一致性改进。
translated by 谷歌翻译
对比表示学习旨在通过估计数据的多个视图之间的共享信息来获得有用的表示形式。在这里,数据增强的选择对学会表示的质量很敏感:随着更难的应用,数据增加了,视图共享更多与任务相关的信息,但也可以妨碍表示代表的概括能力。在此激励的基础上,我们提出了一种新的强大的对比度学习计划,即r \'enyicl,可以通过利用r \'enyi差异来有效地管理更艰难的增强。我们的方法建立在r \'enyi差异的变异下限基础上,但是由于差异很大,对变异方法的使用是不切实际的。要应对这一挑战,我们提出了一个新颖的对比目标,该目标是进行变异估计的新型对比目标偏斜r \'enyi的分歧,并提供理论保证,以确保偏差差异如何导致稳定训练。我们表明,r \'enyi对比度学习目标执行先天的硬性负面样本和易于选择的阳性抽样学习有用的功能并忽略滋扰功能。通过在Imagenet上进行实验,我们表明,r \'enyi对比度学习具有更强的增强性能优于其他自我监督的方法,而无需额外的正则化或计算上的开销。图形和表格,显示了与其他对比方法相比的经验增益。
translated by 谷歌翻译
Humans view the world through many sensory channels, e.g., the long-wavelength light channel, viewed by the left eye, or the high-frequency vibrations channel, heard by the right ear. Each view is noisy and incomplete, but important factors, such as physics, geometry, and semantics, tend to be shared between all views (e.g., a "dog" can be seen, heard, and felt). We investigate the classic hypothesis that a powerful representation is one that models view-invariant factors. We study this hypothesis under the framework of multiview contrastive learning, where we learn a representation that aims to maximize mutual information between different views of the same scene but is otherwise compact. Our approach scales to any number of views, and is viewagnostic. We analyze key properties of the approach that make it work, finding that the contrastive loss outperforms a popular alternative based on cross-view prediction, and that the more views we learn from, the better the resulting representation captures underlying scene semantics. Our approach achieves state-of-the-art results on image and video unsupervised learning benchmarks.
translated by 谷歌翻译
学习概括不见于没有人类监督的有效视觉表现是一个基本问题,以便将机器学习施加到各种各样的任务。最近,分别是SIMCLR和BYOL的两个自我监督方法,对比学习和潜在自动启动的家庭取得了重大进展。在这项工作中,我们假设向这些算法添加显式信息压缩产生更好,更强大的表示。我们通过开发与条件熵瓶颈(CEB)目标兼容的SIMCLR和BYOL配方来验证这一点,允许我们衡量并控制学习的表示中的压缩量,并观察它们对下游任务的影响。此外,我们探讨了Lipschitz连续性和压缩之间的关系,显示了我们学习的编码器的嘴唇峰常数上的易触摸下限。由于Lipschitz连续性与稳健性密切相关,这为什么压缩模型更加强大提供了新的解释。我们的实验证实,向SIMCLR和BYOL添加压缩显着提高了线性评估精度和模型鲁棒性,跨各种域移位。特别是,Byol的压缩版本与Reset-50的ImageNet上的76.0%的线性评估精度达到了76.0%的直线评价精度,并使用Reset-50 2x的78.8%。
translated by 谷歌翻译
A prominent technique for self-supervised representation learning has been to contrast semantically similar and dissimilar pairs of samples. Without access to labels, dissimilar (negative) points are typically taken to be randomly sampled datapoints, implicitly accepting that these points may, in reality, actually have the same label. Perhaps unsurprisingly, we observe that sampling negative examples from truly different labels improves performance, in a synthetic setting where labels are available. Motivated by this observation, we develop a debiased contrastive objective that corrects for the sampling of same-label datapoints, even without knowledge of the true labels. Empirically, the proposed objective consistently outperforms the state-of-the-art for representation learning in vision, language, and reinforcement learning benchmarks. Theoretically, we establish generalization bounds for the downstream classification task.
translated by 谷歌翻译
对比学习(CL)是自我监督学习(SSL)最成功的范式之一。它以原则上的方式考虑了两个增强的“视图”,同一图像是正面的,将其拉近,所有其他图像都是负面的。但是,在基于CL的技术的令人印象深刻的成功之后,它们的配方通常依赖于重型设置,包括大型样品批次,广泛的培训时代等。因此,我们有动力解决这些问题并建立一个简单,高效但有竞争力的问题对比学习的基线。具体而言,我们从理论和实证研究中鉴定出对广泛使用的Infonce损失的显着负阳性耦合(NPC)效应,从而导致有关批处理大小的不合适的学习效率。通过消除NPC效应,我们提出了脱钩的对比度学习(DCL)损失,该损失从分母中删除了积极的术语,并显着提高了学习效率。 DCL对竞争性表现具有较小的对亚最佳超参数的敏感性,既不需要SIMCLR中的大批量,Moco中的动量编码或大型时代。我们以各种基准来证明,同时表现出对次优的超参数敏感的鲁棒性。值得注意的是,具有DCL的SIMCLR在200个时期内使用批次尺寸256实现68.2%的Imagenet-1K TOP-1精度,在预训练中的表现优于其SIMCLR基线6.4%。此外,DCL可以与SOTA对比度学习方法NNCLR结合使用,以达到72.3%的Imagenet-1k Top-1精度,在400个时期的512批次大小中,这代表了对比学习中的新SOTA。我们认为DCL为将来的对比SSL研究提供了宝贵的基准。
translated by 谷歌翻译
在本文中,我们从优化的角度研究了对比度学习,旨在分析和解决现有的对比学习方法的基本问题,这些方法依靠大批量大小或大型矢量词典。我们考虑了对比度学习的全球目标,该目标将每个正对与锚点的所有负对对比。从优化的角度来看,我们解释了为什么诸如SIMCLR之类的现有方法需要大批量大小才能获得令人满意的结果。为了消除此类要求,我们提出了一种记忆有效的随机优化算法,用于求解名为SOGCLR的对比度学习的全局目标。我们表明,在足够数量的迭代次数之后,在合理条件下,其优化误差可以忽略不计,或者对于稍有不同的全局对比目标而减少。从经验上讲,我们证明具有小批量大小的SOGCLR(例如256)可以在Imagenet-1k上的自我监督学习任务上获得与具有较大批量大小(例如8192)的SIMCLR相似的性能。我们还试图证明所提出的优化技术是通用的,可以应用于解决其他对比损失,例如双峰对比度学习的双向对比损失。提出的方法是在我们开源的图书馆libauc(www.libauc.org)中实现的。
translated by 谷歌翻译
Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity. Despite the promise, the performance of PLL often lags behind the supervised counterpart. In this work, we bridge the gap by addressing two key research challenges in PLL -- representation learning and label disambiguation -- in one coherent framework. Specifically, our proposed framework PiCO consists of a contrastive learning module along with a novel class prototype-based label disambiguation algorithm. PiCO produces closely aligned representations for examples from the same classes and facilitates label disambiguation. Theoretically, we show that these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm perspective. Moreover, we study a challenging yet practical noisy partial label learning setup, where the ground-truth may not be included in the candidate set. To remedy this problem, we present an extension PiCO+ that performs distance-based clean sample selection and learns robust classifiers by a semi-supervised contrastive learning algorithm. Extensive experiments demonstrate that our proposed methods significantly outperform the current state-of-the-art approaches in standard and noisy PLL tasks and even achieve comparable results to fully supervised learning.
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
我们提出了自适应培训 - 一种统一的培训算法,通过模型预测动态校准并增强训练过程,而不会产生额外的计算成本 - 以推进深度神经网络的监督和自我监督的学习。我们分析了培训数据的深网络培训动态,例如随机噪声和对抗例。我们的分析表明,模型预测能够在数据中放大有用的基础信息,即使在没有任何标签信息的情况下,这种现象也会发生,突出显示模型预测可能会产生培训过程:自适应培训改善了深网络的概括在噪音下,增强自我监督的代表学习。分析还阐明了解深度学习,例如,在经验风险最小化和最新的自我监督学习算法的折叠问题中对最近发现的双重现象的潜在解释。在CIFAR,STL和Imagenet数据集上的实验验证了我们在三种应用中的方法的有效性:用标签噪声,选择性分类和线性评估进行分类。为了促进未来的研究,该代码已在HTTPS://github.com/layneh/Self-Aveptive-训练中公开提供。
translated by 谷歌翻译
深层神经网络能够轻松地使用软磁横层(CE)丢失来记住嘈杂的标签。先前的研究试图解决此问题的重点是将噪声损失函数纳入CE损失。但是,记忆问题得到了缓解,但仍然由于非持鲁棒的损失而造成的。为了解决这个问题,我们专注于学习可靠的对比度表示数据,分类器很难记住CE损失下的标签噪声。我们提出了一种新颖的对比正则化函数,以通过标签噪声不主导表示表示的嘈杂数据来学习此类表示。通过理论上研究由提议的正则化功能引起的表示形式,我们揭示了学识渊博的表示形式将信息保留与真实标签和丢弃与损坏标签相关的信息有关的信息。此外,我们的理论结果还表明,学到的表示形式对标签噪声是可靠的。通过基准数据集的实验证明了该方法的有效性。
translated by 谷歌翻译
尽管自我监督学习(SSL)方法取得了经验成功,但尚不清楚其表示的哪些特征导致了高下游精度。在这项工作中,我们表征了SSL表示应该满足的属性。具体而言,我们证明了必要和充分的条件,因此,对于给出的数据增强的任何任务,在该表示形式上训练的所需探针(例如,线性或MLP)具有完美的准确性。这些要求导致一个统一的概念框架,用于改善现有的SSL方法并得出新方法。对于对比度学习,我们的框架规定了对以前的方法(例如使用不对称投影头)的简单但重大改进。对于非对比度学习,我们使用框架来得出一个简单新颖的目标。我们所得的SSL算法在标准基准测试上的表现优于基线,包括Imagenet线性探测的SHAV+多螺旋桨。
translated by 谷歌翻译
Contrastive learning applied to self-supervised representation learning has seen a resurgence in recent years, leading to state of the art performance in the unsupervised training of deep image models. Modern batch contrastive approaches subsume or significantly outperform traditional contrastive losses such as triplet, max-margin and the N-pairs loss. In this work, we extend the self-supervised batch contrastive approach to the fully-supervised setting, allowing us to effectively leverage label information. Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes. We analyze two possible versions of the supervised contrastive (SupCon) loss, identifying the best-performing formulation of the loss. On ResNet-200, we achieve top-1 accuracy of 81.4% on the Ima-geNet dataset, which is 0.8% above the best number reported for this architecture. We show consistent outperformance over cross-entropy on other datasets and two ResNet variants. The loss shows benefits for robustness to natural corruptions, and is more stable to hyperparameter settings such as optimizers and data augmentations. Our loss function is simple to implement and reference TensorFlow code is released at https://t.ly/supcon 1 .
translated by 谷歌翻译
自我监督学习中的最新作品通过依靠对比度学习范式来推动最先进的工作,该范式通过推动正面对或从同一班级中的类似示例来学习表示形式,同时将负面对截然不同。尽管取得了经验的成功,但理论基础是有限的 - 先前的分析假设鉴于同一类标签的正对有条件独立性,但是最近的经验应用使用了密切相关的正对(即同一图像的数据增强)。我们的工作分析了对比度学习,而无需在数据上使用增强图的新概念假设正对的有条件独立性。此图中的边缘连接相同数据的增强,而地面实际类别自然形成了连接的子图。我们提出了在人口增强图上执行光谱分解的损失,并且可以简洁地作为对神经净表示的对比学习目标。最小化此目标会导致在线性探针评估下具有可证明准确性的功能。通过标准的概括范围,在最大程度地减少训练对比度损失时,这些准确性也可以保证。从经验上讲,我们目标所学的功能可以匹配或胜过基准视觉数据集上的几个强基线。总的来说,这项工作为对比度学习提供了首次可证明的分析,在该学习中,线性探针评估的保证可以适用于现实的经验环境。
translated by 谷歌翻译
了解深度神经网络的泛化是深度学习中最重要的任务之一。虽然已经取得了很大进展,但理论错误界限仍然往往与经验观察结果不同。在这项工作中,我们开发基于保证金的泛化界,其中边距是在从训练分布中采样的独立随机子集之间的最佳运输成本标准化。特别地,最佳运输成本可以被解释为方差的概念,其捕获学习特征空间的结构特性。我们的界限强大地预测了在大规模数据集上给定培训数据和网络参数的泛化误差。从理论上讲,我们表明特征的浓度和分离在泛化中起着至关重要的作用,支持文献中的经验结果。该代码可用于\ url {https:/github.com/chingyaoc/kv-margin}。
translated by 谷歌翻译
最近已证明自我监督的对比学习(CL)非常有效地防止深网贴上嘈杂的标签。尽管取得了经验成功,但对对比度学习对增强鲁棒性的影响的理论理解非常有限。在这项工作中,我们严格地证明,通过对比度学习学到的表示矩阵可以通过:(i)与数据中每个子类相对应的一个突出的奇异值来增强鲁棒性,并显着较小的剩余奇异值; (ii){{显着的单数矢量与每个子类的干净标签之间的一个很大的对齐。以上属性使对此类表示的线性层能够有效地学习干净的标签,而不会过度适应噪音。}我们进一步表明,通过对比度学习预先训练的深网的雅各比式的低级别结构使他们能够获得优越的最初的性能是在嘈杂的标签上进行微调时。最后,我们证明了对比度学习提供的最初鲁棒性使鲁棒训练方法能够在极端噪声水平下实现最先进的性能,例如平均27.18 \%\%和15.58 \%\%\%\%\%cifar-10上的提高和80 \%对称嘈杂标签的CIFAR-100,网络视频的准确性提高4.11 \%。
translated by 谷歌翻译
尽管自我监督的学习技术通常用于通过建模多种观点来从未标记的数据中挖掘隐性知识,但尚不清楚如何在复杂且不一致的环境中执行有效的表示学习。为此,我们提出了一种方法,特别是一致性和互补网络(Coconet),该方法利用了严格的全局视图一致性和局部跨视图互补性,以维护正则化,从而从多个视图中全面学习表示形式。在全球阶段,我们认为关键知识在观点之间隐含地共享,并增强编码器以从数据中捕获此类知识可以提高学习表示表示的可区分性。因此,保留多种观点的全球一致性可确保获得常识。 Coconet通过利用基于广义切成薄片的Wasserstein距离利用有效的差异度量测量来对齐视图的概率分布。最后,在本地阶段,我们提出了一个启发式互补性因素,该因素是跨观看歧视性知识的,它指导编码者不仅要学习视图的可辨别性,而且还学习跨视图互补信息。从理论上讲,我们提供了我们提出的椰子的基于信息理论的分析。从经验上讲,为了研究我们方法的改善,我们进行了足够的实验验证,这表明椰子的表现优于最先进的自我监督方法,这证明了这种隐含的一致性和互补性可以增强正则化的能力潜在表示的可区分性。
translated by 谷歌翻译
对比性自我监督学习(SSL)学习一个嵌入式空间,该空间将相似的数据对映射到更紧密的数据对,并且不同的数据对较远。尽管成功了,但一个问题被忽略了:使用对比SSL学到的表示的公平方面。在不缓解的情况下,对比度SSL技术可以结合诸如性别或种族之类的敏感信息,并在下游任务上产生不公平的预测。在本文中,我们提出了一种有条件的对比学习(CCL)方法来改善对比度SSL方法的公平性。我们的方法从对敏感属性的分布调节中的分布对正面和负对进行了对阳性和负对采样,或者从经验上讲,从同一性别或同一种族中抽样正面和负面对。我们表明,我们的方法证明可以最大程度地提高正面对学的表示表示之间的条件相互信息,并通过将其作为条件变量来降低敏感属性的效果。在七个公平和视觉数据集上,我们从经验上证明,与无监督的基线相比,所提出的方法可以实现最新的下游性能,并显着提高了对比度SSL模型在多个公平度量方面的公平性。
translated by 谷歌翻译
作为一种成功的自我监督学习方法,对比学习旨在学习输入样本扭曲之间共享的不变信息。尽管对比度学习在抽样策略和架构设计方面取得了持续的进步,但仍然存在两个持续的缺陷:任务 - 核定信息的干扰和样本效率低下,这与琐碎的恒定解决方案的反复存在有关。从维度分析的角度来看,我们发现尺寸的冗余和尺寸混杂因素是现象背后的内在问题,并提供了实验证据来支持我们的观点。我们进一步提出了一种简单而有效的方法metamask,这是元学习学到的维度面膜的缩写,以学习反对维度冗余和混杂因素的表示形式。 MetAmask采用冗余技术来解决尺寸的冗余问题,并创新地引入了尺寸掩模,以减少包含混杂因子的特定维度的梯度效应,该效果通过采用元学习范式进行培训,以改善掩盖掩盖性能的目标典型的自我监督任务的表示。与典型的对比方法相比,我们提供了坚实的理论分析以证明元掩体可以获得下游分类的更严格的风险范围。从经验上讲,我们的方法在各种基准上实现了最先进的性能。
translated by 谷歌翻译
对自我监督学习(SSL)的最新分析发现,以下以数据为中心的属性对于学习良好表示至关重要:对任务 - 无关紧要的语义的不变性,在某些潜在空间中的类别可分离性以及从增强样品中可恢复标签的类别。但是,鉴于它们的离散,非欧成功的性质,图形数据集和图SSL方法不太可能满足这些属性。这提出了一个问题:如何绘制SSL方法(例如对比度学习(CL))如何工作?为了系统地探究这个问题,我们在使用通用图扩展(GGAS)时对CL进行概括分析,重点是以数据为中心的属性。我们的分析对GGA的局限性以及与任务相关的增强的必要性产生了正式见解。正如我们经验表明的那样,GGA不会在共同基准数据集上引起与任务相关的不变性,这只会导致对天真的,未经训练的基线的边际收益。我们的理论激发了合成数据生成过程,该过程能够控制与任务相关的信息并拥有预定义的最佳增强。这种灵活的基准测试有助于我们确定高级增强技术(例如自动化方法)中未认可的限制。总体而言,我们的工作在经验和理论上都严格地对以数据为中心的属性对图形SSL的增强策略和学习范式的影响进行了严格的背景。
translated by 谷歌翻译